ﻻ يوجد ملخص باللغة العربية
We have studied the interference of degenerate quantum gases in a vertical optical lattice. The coherence of the atoms leads to an interference pattern when the atoms are released from the lattice. This has been shown for a Bose-Einstein condensate in early experiments. Here we demonstrate that also for fermions an interference pattern can be observed provided that the momentum distribution is smaller then the recoil momentum of the lattice. Special attention is given to the role of interactions which wash out the interference pattern for a condensate but do not affect a spin polarized Fermi gas, where collisions at ultra cold temperatures are forbidden. Comparing the interference of the two quantum gases we find a clear superiority of fermions for trapped atom interferometry.
We propose new multi-dimensional atom optics that can create coherent superpositions of atomic wavepackets along three spatial directions. These tools can be used to generate light-pulse atom interferometers that are simultaneously sensitive to the t
Experimental and theoretical studies are made of Brownian particles trapped in a periodic potential, which is very slightly tilted due to gravity. In the presence of fluctuations, these will trigger a measurable average drift along the direction of t
We demonstrate matterwave interference in a warm vapor of rubidium atoms. Established approaches to light pulse atom interferometry rely on laser cooling to concentrate a large ensemble of atoms into a velocity class resonant with the atom optical li
We report on the realization of a matter-wave interferometer based on single-photon interaction on the ultra-narrow optical clock transition of strontium atoms. We experimentally demonstrated its operation as a gravimeter and as a gravity gradiometer
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these