ﻻ يوجد ملخص باللغة العربية
The simulation of the ATLAS detector is a major challenge, given the complexity of the detector and the demanding environment of the LHC. The apparatus, one of the biggest and most complex ever designed, requires a detailed, flexible and, if possible, fast simulation which is needed already today to deal with questions related to design optimization, to issues raised by staging scenarios, and of course to enable detailed physics studies to lay the basis for the first physics discoveries. Scalability and robustness stand out as the most critical issues that are to be faced in the implementation of such a simulation. In this paper we present the status of the present simulation and the adopted solutions in terms of speed optimization, centralization of services, framework facilities and persistency solutions. Emphasis is put on the global performance when the different detector components are collected together in a full and detailed simulation. The reference tool adopted is Geant4.
The KATRIN experiment, presently under construction in Karlsruhe, Germany, will improve on previous laboratory limits on the neutrino mass by a factor of ten. KATRIN will use a high-activity, gaseous T2 source and a very high-resolution spectrometer
The EDELWEISS Dark Matter search uses low-temperature Ge detectors with heat and ionisation read- out to identify nuclear recoils induced by elastic collisions with WIMPs from the galactic halo. Results from the operation of 70 g and 320 g Ge detecto
Rapidly applying the effects of detector response to physics objects (e.g. electrons, muons, showers of particles) is essential in high energy physics. Currently available tools for the transformation from truth-level physics objects to reconstructed
The CMS experiment at the LHC accelerator at CERN relies on its computing infrastructure to stay at the frontier of High Energy Physics, searching for new phenomena and making discoveries. Even though computing plays a significant role in physics ana
Psychological bias towards, or away from, a prior measurement or a theory prediction is an intrinsic threat to any data analysis. While various methods can be used to avoid the bias, e.g. actively not looking at the result, only data blinding is a tr