ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

92   0   0.0 ( 0 )
 نشر من قبل Juhao Wu
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter $K$. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.



قيم البحث

اقرأ أيضاً

Most studies of Coherent Synchrotron Radiation (CSR) have only considered the radiation from independent dipole magnets. However, in the damping rings of future linear colliders, a large fraction of the radiation power will be emitted in damping wigg lers. In this paper, the longitudinal wakefield and impedance due to CSR in a wiggler are derived in the limit of a large wiggler parameter $K$. After an appropriate scaling, the results can be expressed in terms of universal functions, which are independent of $K$. Analytical asymptotic results are obtained for the wakefield in the limit of large and small distances, and for the impedance in the limit of small and high frequencies.
An understanding of collective effects is of fundamental importance for the design and optimisation of the performance of modern accelerators. In particular, the design of an accelerator with strict requirements on the beam quality, such as a free el ectron laser (FEL), is highly dependent on a correspondence between simulation, theory and experiments in order to correctly account for the effect of coherent synchrotron radiation (CSR), and other collective effects. A traditional approach in accelerator simulation codes is to utilise an analytic one-dimensional approximation to the CSR force. We present an extension of the 1D CSR theory in order to correctly account for the CSR force at the entrance and exit of a bending magnet. A limited range of applicability to this solution, in particular in bunches with a large transverse spot size or offset from the nominal axis, is recognised. More recently developed codes calculate the CSR effect in dispersive regions directly from the Lienard-Wiechert potentials, albeit with approximations to improve the computational time. A new module of the General Particle Tracer (GPT) code was developed for simulating the effects of CSR, and benchmarked against other codes. We experimentally demonstrate departure from the commonly used 1D CSR theory for more extreme bunch length compression scenarios at the FERMI FEL facility. Better agreement is found between experimental data and the codes which account for the transverse extent of the bunch, particularly in more extreme compression scenarios.
111 - A.E. Charman , J.S. Wurtele , 2020
Within the framework of a Hilbert space theory, we develop a maximum-``power variational principle (MPVP) applicable to classical spontaneous electromagnetic radiation from relativistic electron beams or other prescribed classical current sources. A simple proof is summarized for the case of three-dimensional fields propagating in vacuum, and specialization to the important case of paraxial optics is also discussed. The techniques have been developed to model undulator radiation from relativistic electron beams, but are more broadly applicable to synchrotron or other radiation problems, and may generalize to certain structured media. We illustrate applications with a simple, mostly analytic example involving spontaneous undulator radiation (requiring a few additional approximations), as well as a mostly numerical example involving x-ray generation via high harmonic generation in sequenced undulators
We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wavenumber intervals of $0.074 ~textrm{cm}^{-1}$, and are high ly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by RF diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multi-bend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.
Bunches of high charge (up to 10 nC) are compressed in length in the CTF II magnetic chicane to less than 0.2 mm rms. The short bunches radiate coherently in the chicane magnetic field, and the horizontal and longitudinal phase space density distribu tions are affected. This paper reports the results of beam emittance and momentum measurements. Horizontal and vertical emittances and momentum spectra were measured for different bunch compression factors and bunch charges. In particular, for 10 nC bunches, the mean beam momentum decreased by about 5% while the FWHM momentum spread increased from 5% to 19%. The experimental results are compared with simulations made with the code TraFiC4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا