ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental noise limitations to supercontinuum generation in microstructure fiber

77   0   0.0 ( 0 )
 نشر من قبل Kristan L. Corwin
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50 % for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schroedinger equation, finding good quantitative agreement over a range of input pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input pulse shot noise and the spontaneous Raman scattering down the fiber.



قيم البحث

اقرأ أيضاً

We demonstrate the generation of a low-noise, octave-spanning mid-infrared supercontinuum from 1700 to 4800 nm by injecting femtosecond pulses into the normal dispersion regime of a multimode step-index chalcogenide fiber with 100 $mu$m core diameter . We conduct a systematic study of the intensity noise across the supercontinuum spectrum and show that the initial fluctuations of the pump laser are at most amplified by a factor of three. We also perform a comparison with the noise characteristics of an octave-spanning supercontinuum generated in the anomalous dispersion regime of a multimode fluoride fiber with similar core size and show that the all-normal dispersion supercontinuum in the multimode chalcogenide fiber has superior noise characteristics. Our results open up novel perspective for many practical applications such as long-distance remote sensing where high power and low noise are paramount.
We demonstrate broadband supercontinuum generation in an all-normal dispersion polarization-maintaining photonic crystal fiber and we report the observation of a cross-phase modulation instability sideband that is generated outside of the supercontin uum bandwidth. We demonstrate this sideband is polarized on the slow axis and can be suppressed by pumping on the fibers fast axis. We theoretically confirm and model this nonlinear process using phase-matching conditions and numerical simulations, obtaining good agreement with the measured data.
We demonstrate a route to supercontinuum generation in gas-filled hollow-core anti-resonant fibers through the creation of a broad vibrational Raman frequency comb followed by continuous broadening and merging of the comb lines through either rotatio nal Raman scattering or the optical Kerr effect. Our demonstration experiments, utilizing a single pump pulse with 20 ps duration at 532 nm in a nitrogen-filled fiber, produce a supercontinuum spanning from 440 nm to 1200 nm, with an additional deep ultraviolet continuum from 250 nm to 360 nm. Numerical results suggest that this approach can produce even broader supercontinuum spectra extending from the ultraviolet to mid-infrared.
The generation of a two-octave supercontinuum from the visible to mid-infrared (700 - 2800 nm) in a non-silica graded-index multimode fiber is reported. The fiber design is based on a nanostructured core comprised of two types of drawn lead-bismuth-g allate glass rods with different refractive indices. This structure yields an effective parabolic index profile, an extended transmission window, and ten times increased nonlinearity when compared to silica fibers. Using femtosecond pulse pumping at wavelengths in both normal and anomalous dispersion regimes, a detailed study is carried out into the supercontinuum generating mechanisms and instabilities seeded by periodic self imaging. Significantly, suitable injection conditions in the high power regime are found to result in the output beam profile showing clear signatures of beam self-cleaning from nonlinear mode mixing. Experimental observations are interpreted using spatio-temporal 3+1D numerical simulations of the generalized nonlinear Schrodinger equation, and simulated spectra are in excellent agreement with experiment over the full two-octave spectral bandwidth. These results demonstrate a new pathway towards the generation of bright, ultrabroadband light sources in the mid-infrared.
172 - B. Wetzel , A. Stefani , L. Larger 2012
The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave sol itons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures of pump depletion and soliton-like pump dynamics. Experimental results are in excellent agreement with simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا