ترغب بنشر مسار تعليمي؟ اضغط هنا

Convective Fingering of an Autocatalytic Reaction Front

59   0   0.0 ( 0 )
 نشر من قبل Stephen Morris
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a {it p}H indicator. We measured the spacing of the fingers during their initial stages and compared this to the wavelength of the fastest growing linear mode predicted by the stability analysis of Huang {it et. al.} [{it Phys. Rev. E}, {bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness dependence predicted by the theory.



قيم البحث

اقرأ أيضاً

The extent and the morphology of ice forming in a differentially heated cavity filled with water is studied by means of experiments and numerical simulations. We show that the main mechanism responsible for the ice shaping is the existence of a cold upward convective current in the system. Such a current is ascribed to the peculiar equation of state of water, i.e., the non-monotonous dependence of density with temperature. The precise form of the ice front depends on several factors, first the temperature difference across the cell which drives the convection, second the wall inclination with respect to the vertical, both of which are here explored. We propose a boundary-layer model and a buoyancy-intensity model which account for the main features of the ice morphology.
426 - Varun Giri , Sanjay Jain 2011
Large molecules such as proteins and nucleic acids are crucial for life, yet their primordial origin remains a major puzzle. The production of large molecules, as we know it today, requires good catalysts, and the only good catalysts we know that can accomplish this task consist of large molecules. Thus the origin of large molecules is a chicken and egg problem in chemistry. Here we present a mechanism, based on autocatalytic sets (ACSs), that is a possible solution to this problem. We discuss a mathematical model describing the population dynamics of molecules in a stylized but prebiotically plausible chemistry. Large molecules can be produced in this chemistry by the coalescing of smaller ones, with the smallest molecules, the `food set, being buffered. Some of the reactions can be catalyzed by molecules within the chemistry with varying catalytic strengths. Normally the concentrations of large molecules in such a scenario are very small, diminishing exponentially with their size. ACSs, if present in the catalytic network, can focus the resources of the system into a sparse set of molecules. ACSs can produce a bistability in the population dynamics and, in particular, steady states wherein the ACS molecules dominate the population. However to reach these steady states from initial conditions that contain only the food set typically requires very large catalytic strengths, growing exponentially with the size of the catalyst molecule. We present a solution to this problem by studying `nested ACSs, a structure in which a small ACS is connected to a larger one and reinforces it. We show that when the network contains a cascade of nested ACSs with the catalytic strengths of molecules increasing gradually with their size (e.g., as a power law), a sparse subset of molecules including some very large molecules can come to dominate the system.
Starting from our recent chemical master equation derivation of the model of an autocatalytic reaction-diffusion chemical system with reactions $U+2V {stackrel {lambda_0}{rightarrow}}~ 3 V;$ and $V {stackrel {mu}{rightarrow}}~P$, $U {stackrel { u}{ri ghtarrow}}~ Q$, we determine the effects of intrinsic noise on the momentum-space behavior of its kinetic parameters and chemical concentrations. We demonstrate that the intrinsic noise induces $n rightarrow n$ molecular interaction processes with $n geq 4$, where $n$ is the number of molecules participating of type $U$ or $V$. The momentum dependences of the reaction rates are driven by the fact that the autocatalytic reaction (inelastic scattering) is renormalized through the existence of an arbitrary number of intermediate elastic scatterings, which can also be interpreted as the creation and subsequent decay of a three body composite state $sigma = phi_u phi_v^2$, where $phi_i$ corresponds to the fields representing the densities of $U$ and $V$. Finally, we discuss the difference between representing $sigma$ as a composite or an elementary particle (molecule) with its own kinetic parameters. In one dimension we find that while they show markedly different behavior in the short spatio-temporal scale, high momentum (UV) limit, they are formally equivalent in the large spatio-temporal scale, low momentum (IR) regime. On the other hand in two dimensions and greater, due to the effects of fluctuations, there is no way to experimentally distinguish between a fundamental and composite $sigma$. Thus in this regime $sigma$ behave as an entity unto itself suggesting that it can be effectively treated as an independent chemical species.
The emergence of self-sustaining autocatalytic networks in chemical reaction systems has been studied as a possible mechanism for modelling how living systems first arose. It has been known for several decades that such networks will form within syst ems of polymers (under cleavage and ligation reactions) under a simple process of random catalysis, and this process has since been mathematically analysed. In this paper, we provide an exact expression for the expected number of self-sustaining autocatalytic networks that will form in a general chemical reaction system, and the expected number of these networks that will also be uninhibited (by some molecule produced by the system). Using these equations, we are able to describe the patterns of catalysis and inhibition that maximise or minimise the expected number of such networks. We apply our results to derive a general theorem concerning the trade-off between catalysis and inhibition, and to provide some insight into the extent to which the expected number of self-sustaining autocatalytic networks coincides with the probability that at least one such system is present.
We revisit the problem of pinning a reaction-diffusion front by a defect, in particular by a reaction-free region. Using collective variables for the front and numerical simulations, we compare the behaviors of a bistable and monostable front. A bist able front can be pinned as confirmed by a pinning criterion, the analysis of the time independant problem and simulations. Conversely, a monostable front can never be pinned, it gives rise to a secondary pulse past the defect and we calculate the time this pulse takes to appear. These radically different behaviors of bistable and monostable fronts raise issues for modelers in particular areas of biology, as for example, the study of tumor growth in the presence of different tissues.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا