ترغب بنشر مسار تعليمي؟ اضغط هنا

Meson - nucleon vertex form factors at finite temperature

103   0   0.0 ( 0 )
 نشر من قبل Abdulla Rakhimov
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English
 تأليف F.C. Khanna




اسأل ChatGPT حول البحث

In this paper the dependence of meson-nucleon-nucleon vertex form factors is studied as a function of termperature. The results are obtained starting from a zero temperature Bonn potential. The temperature dependence of the vertex form factors and radii is studied in the thermofield dynamics, a real-time operator formalism of finite temperature field theory. It is anticipated that these results will have an impact on the study of relativistic heavy-ion collisions as the critical temperature for the phase transition from hadronic to quark-gluon system is approached.



قيم البحث

اقرأ أيضاً

70 - C. Downum 2006
We demonstrate the calculation of the coupling constants and form factors required by effective hadron lagrangians using the quark model. These relations follow from equating expressions for strong transition amplitudes in the two approaches. As exam ples we derive the NNm nucleon-meson coupling constants and form factors for m = pi, eta, eta, sigma, a_0, omega and rho, using harmonic oscillator quark model meson and baryon wavefunctions and the 3P0 decay model; this is a first step towards deriving a quark-based model of the NN force at all separations. This technique should be useful in the application of effective lagrangians to processes in which the lack of data precludes the direct determination of coupling constants and form factors from experiment.
116 - J. Segovia , C. Chen , Z.-F. Cui 2019
We present a unified description of elastic and transition form factors involving the nucleon and its resonances; in particular, the $N(1440)$, $Delta(1232)$ and $Delta(1600)$. We compare predictions made using a framework built upon a Faddeev equati on kernel and interaction vertices that possess QCD-kindred momentum dependence with results obtained using a confining, symmetry-preserving treatment of a vector$,otimes,$vector contact-interaction in a widely-used leading-order (rainbow-ladder) truncation of QCDs Dyson-Schwinger equations. This comparison explains that the contact-interaction framework produces hard form factors, curtails some quark orbital angular momentum correlations within a baryon, and suppresses two-loop diagrams in the elastic and transition electromagnetic currents. Such defects are rectified in our QCD-kindred framework and, by contrasting the results obtained for the same observables in both theoretical schemes, shows those objects which are most sensitive to the momentum dependence of elementary quantities in QCD.
A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves a single parameter; i.e., a diquark charge radius. It is argued to be commensurate with the pions charge radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular feature of the study is a separation of form factor contributions into those from different diagram types and correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of results that one could highlight are: r_1^{n,u}>r_1^{n,d}, owing to the presence of axial-vector quark-quark correlations; and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.
We shortly review point-form quantum field theory, i.e. the canonical quantization of a relativistic field theory on a Lorentz-invariant surface of the form $x_mu x^mu = tau^2$. As an example of how point-form quantum field theory may enter the frame work of relativistic quantum mechanics we discuss the calculation of the electromagnetic form factor of a confined quark-antiquark pair (e.g. the pion).
84 - T. Melde , K. Berger , L. Canton 2006
We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point form s. Corresponding results for the elastic nucleon electromagnetic form factors as well as charge radii and magnetic moments are presented. We also compare results obtained by different realistic nucleon wave functions stemming from alternative constituent quark models. Finally, we discuss the theoretical uncertainties that reside in the construction of spectator-model transition operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا