ﻻ يوجد ملخص باللغة العربية
In this paper the dependence of meson-nucleon-nucleon vertex form factors is studied as a function of termperature. The results are obtained starting from a zero temperature Bonn potential. The temperature dependence of the vertex form factors and radii is studied in the thermofield dynamics, a real-time operator formalism of finite temperature field theory. It is anticipated that these results will have an impact on the study of relativistic heavy-ion collisions as the critical temperature for the phase transition from hadronic to quark-gluon system is approached.
We demonstrate the calculation of the coupling constants and form factors required by effective hadron lagrangians using the quark model. These relations follow from equating expressions for strong transition amplitudes in the two approaches. As exam
We present a unified description of elastic and transition form factors involving the nucleon and its resonances; in particular, the $N(1440)$, $Delta(1232)$ and $Delta(1600)$. We compare predictions made using a framework built upon a Faddeev equati
A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between
We shortly review point-form quantum field theory, i.e. the canonical quantization of a relativistic field theory on a Lorentz-invariant surface of the form $x_mu x^mu = tau^2$. As an example of how point-form quantum field theory may enter the frame
We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point form