ﻻ يوجد ملخص باللغة العربية
We investigate an extended chiral soliton model which includes $pi, rho, omega$ and $sigma $ mesons as explicit degrees of freedom. The Lagrangian incorporates chiral symmetry and broken scale invariance. A scalar-isoscalar meson $sigma$ is associated with a quarkonium dilaton field with a mass $msigapprox 550 $MeV. We show that the scalar field with anomalous dimension slightly changes the static and electromagnetic properties of the nucleon. In contrast, it plays a significant role in nucleon-nucleon dynamics and gives an opportunity to describe well the two-nucleon interaction.
Some form of nonperturbative regularization is necessary if effective field theory treatments of the NN interaction are to yield finite answers. We discuss various regularization schemes used in the literature. Two of these methods involve formally i
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The i
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-o
Two-pion exchange parity-violating nucleon-nucleon interactions from recent effective field theories and earlier fully covariant approaches are investigated. The potentials are compared with the idea to obtain better insight on the role of low-energy
By analyzing recent microscopic many-body calculations of few-nucleon systems and complex nuclei performed by different groups in terms of realistic nucleon-nucleon (NN) interactions, it is shown that NN short-range correlations (SRCs) have a univers