ترغب بنشر مسار تعليمي؟ اضغط هنا

Virtual Compton Scattering off the nucleon in the linear sigma model

170   0   0.0 ( 0 )
 نشر من قبل Andreas Metz
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Virtual Compton scattering off the nucleon has been studied in the one-loop approximation of the linear sigma model. The three generalized polarizabilities of the nucleon have been calculated and compared with the existing theoretical predictions. In particular, we find that only two of the three scalar polarizabilities are independent observables.



قيم البحث

اقرأ أيضاً

119 - Thomas R. Hemmert 1996
We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinber gs power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.
The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({ vec e},egamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
We report on new measurements of the electric Generalized Polarizability (GP) of the proton $alpha_E$ in a kinematic region where a puzzling dependence on momentum transfer has been observed, and we have found that $alpha_E = (5.3 pm 0.6_{stat} pm 1. 3_{sys})~10^{-4} fm^3$ at $Q^2=0.20~(GeV/c)^2$. The new measurements, when considered along with the rest of the world data, suggest that $alpha_E$ can be described by either a local plateau or by an enhancement in the region $Q^2=0.20~(GeV/c)^2$ to $0.33~(GeV/c)^2$. The experiment also provides the first measurement of the Coulomb quadrupole amplitude in the $N rightarrow Delta$ transition through the exploration of the $p(e,ep)gamma$ reaction. The new measurement gives $CMR = (-4.4 pm 0.8_{stat} pm 0.6_{sys})~%$ at $Q^2=0.20~(GeV/c)^2$ and is consistent with the results from the pion electroproduction world data. It has been obtained using a completely different extraction method, and therefore represents a strong validation test of the world data model uncertainties.
198 - E.J.Downie , H.Fonvieille 2011
We give an overview of low-energy Compton scattering (gamma^(*) p --> gamma p) with a real or virtual incoming photon. These processes allow the investigation of one of the fundamental properties of the nucleon, i.e. how its internal structure deform s under an applied static electromagnetic field. Our knowledge of nucleon polarisabilities and their generalization to non-zero four-momentum transfer will be reviewed, including the presently ongoing experiments and future perspectives.
63 - G.Q. Liu , A.W. Thomas 1996
We calculate the $N^*$ contributions to the generalized polarizabilities of the proton in virtual Compton scattering. The following nucleon excitations are included: $N^*(1535)$, $N^*(1650)$, $N^*(1520)$, $N^*(1700)$, $Delta(1232)$, $Delta^*(1620)$ a nd $Delta^*(1700)$. The relationship between nucleon structure parameters, $N^*$ properties and the generalized polarizabilities of the proton is illustrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا