ترغب بنشر مسار تعليمي؟ اضغط هنا

Test of J-matrix inverse scattering potentials on electromagnetic reactions of few-nucleon systems

115   0   0.0 ( 0 )
 نشر من قبل Giuseppina Orlandini
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The J-matrix inverse scattering nucleon-nucleon potentials (JISP), describing both two-nucleon data and bound and resonant states of light nuclei to high accuracy, are tested on the total photoabsorption cross sections of Deuteron, Triton, 3He and 4He. The calculations in the three- and four-body systems are carried out via the Lorentz integral transform method and the hyperspherical harmonics (HH) technique. To this end the HH formalism has been adapted to accommodate non-local potentials. The cross sections calculated with the JISP are compared to those obtained with more traditional realistic interactions, which include two- and three-nucleon forces. While the results of the two kinds of potential models do not differ significantly at lower energies, beyond the resonance peak they show fairly large discrepancies, which increase with the nuclear mass. We argue that these discrepancies may be due to a probably incorrect long range behavior of the JISP, since the one pion exchange is not manifestly implemented there.



قيم البحث

اقرأ أيضاً

Inclusive electromagnetic reactions in few-nucleon systems are studied basing on accurate three- and four-body calculations. The longitudinal 4He(e,e) response function obtained at qle 600 MeV/c completely agrees with experiment. The exact 4He spectr al function obtained in a semirealistic potential model is presented, and the accuracy of the quasielastic response calculated with its help is assessed, as well as the accuracy of some simpler approximations for the response. The photodisintegration cross section of 3He obtained with the realistic AV14 NN force plus UrbanaVIII NNN force agrees with experiment. It is shown that this cross section is very sensitive to underlying nuclear dynamics in the E_gammasimeq 70-100 MeV region. In particular, the NNN nuclear force clearly manifests itself in this region.
131 - Vadim Baru 2009
We report about the recent results for s- and p-wave pion production in NN -> NNpi within effective field theory and discuss how the charge symmetry breaking in pn -> d pi^0 can be used to extract the strong contribution to the neutron-proton mass difference.
61 - W. Leidemann 2007
Various electromagnetic few-body break-up reactions into the many-body continuum are calculated microscopically with the Lorentz integral transform (LIT) method. For three- and four-body nuclei the nuclear Hamiltonian includes two- and three- nucleon forces, while semirealistic interactions are used in case of six- and seven-body systems. Comparisons with experimental data are discussed. In addition various interesting aspects of the $^4$He photodisintegration are studied: investigation of a tetrahedrical symmetry of $^4$He and a test of non-local nuclear force models via the induced two-body currents.
Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtaine d in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below $Q lesssim 5$ fm$^{-1}$ there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at $Q gtrsim 5$ fm$^{-1}$, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron $A$ structure function extend to $Q simeq 12$ fm$^{-1}$, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.
Recent JLab experimental data on quasi elastic 3He(e,ep)2H(pn) and 4He(e,ep)3H processes are interpreted using an approach based upon realistic wave functions and Glauber multiple scattering theory within a generalized eikonal approximation (GEA). Th e results of a non factorized calculation of the left-right asymmetry A_{TL} of the process 3He(e,ep)2H, obtained using the full covariant form of the electromagnetic operator, are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا