ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneus pion emission during fission - a new nuclear radioactivity

174   0   0.0 ( 0 )
 نشر من قبل Mihai L. Ion
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف D. B. Ion




اسأل ChatGPT حول البحث

In this paper a short review of the theoretical problems of the pionic radioactivity is presented. The essential experimental results obtained in the 18 years of existence of the nuclear pionic radioactivity are reviewed. Moreover, using the recent results on the spontaneous fission half lives of the heavy nuclei with Z >= 100 new predictions on the pionic yields in the region of superheavy elements are established.

قيم البحث

اقرأ أيضاً

95 - D. B. Ion 2011
In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility parameters attain their limiting value X=1. Hence, the SHE-region is characterized by the absence of a classical barrier toward spontaneous muon and pion emissions. Numerical estimations on the yields for the natural muonic radioactivities of the transuranium elements as well numerical values for barrier heights are given only for even-even parent nuclei. Some experimental results from LCP-identification emission spectrum are reviewed. Also, the experimental results obtained by Khryachkov et al, using new spectrometer for investigation of ternary nuclear fission, are presented. The OPERA-experiment proposed to perform search for muonic radioactivity from lead nuclei, in the low background conditions offered by the Gran Sasso underground Laboratory (LNGS), is discussed.
120 - D. B. Ion 2011
In this paper we presented a short review of radioactive halos as from the perspective of their interpretation as integral record in time of different kind of known or unknown radioactivities. A special attention is paid for the unified interpretatio n of the supergiant halos (SGH), discovered by Grady, Walker and Laemlein, as integral record of pion emission during fission.
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. The purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables a re chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.
This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragmen t properties and explicitly time-dependent approaches are needed. The cornerstone of the current microscopic theory of fission is the energy density functional formalism. Its basic tenets, including tools such as the HFB theory, effective two-body effective nuclear potentials, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The EDF approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrodinger equation into a collective Schrodinger-like equation for the nuclear wave-packet. Scission configurations indicate where the split occurs. This collective Schrodinger equation depends on an inertia tensor that includes the response of the system to small changes in the collective variables and also plays a special role in the determination of spontaneous fission half-lives. A trademark of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented with the goal of emphasizing the coherence of the microscopic approaches employed.
The structure and electroweak properties of the pion in symmetric nuclear matter are presented in the framework of the Nambu--Jona-Lasinio model. The pion is described as a bound state of a dressed quark-antiquark pair governed by the Bethe-Salpeter equation. For the in-medium current-light-quark properties we use the quark-meson coupling model, which describes successfully the properties of hadron in a nuclear medium. We found that the light-quark condensates, the pion decay constant and pion-quark coupling constant decrease with increasing nuclear matter density. We then predict the modifications of the charge radius of the charged pion in nuclear matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا