ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body Coulomb breakup of 11Li in the complex scaling method

152   0   0.0 ( 0 )
 نشر من قبل Takayuki Myo
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف T. Myo




اسأل ChatGPT حول البحث

Coulomb breakup strengths of 11Li into a three-body 9Li+n+n system are studied in the complex scaling method. We decompose the transition strengths into the contributions from three-body resonances, two-body ``10Li+n and three-body ``9Li+n+n continuum states. In the calculated results, we cannot find the dipole resonances with a sharp decay width in 11Li. There is a low energy enhancement in the breakup strength, which is produced by both the two- and three-body continuum states. The enhancement given by the three-body continuum states is found to have a strong connection to the halo structure of 11Li. The calculated breakup strength distribution is compared with the experimental data from MSU, RIKEN and GSI.

قيم البحث

اقرأ أيضاً

We study the resonance spectroscopy of the proton-rich nucleus 7B in the 4He+p+p+p cluster model. Many-body resonances are treated on the correct boundary condition as the Gamow states using the complex scaling method. We predict five resonances of 7 B and evaluate the spectroscopic factors of the 6Be-p components. The importance of the 6Be(2+)-p component is shown in several states of 7B, which is a common feature of 7He, a mirror nucleus of 7B. For only the ground state of 7B, the mixing of 6Be(2+) state is larger than that of 6He(2+) in 7He, which indicates the breaking of the mirror symmetry. This is caused by the small energy difference between 7B and the excited 6Be(2+) state, whose origin is the Coulomb repulsion.
We investigate the three-body Coulomb breakup of a two-neutron halo nucleus $^{11}$Li. We use the coupled-channel $^9$Li + $n$ + $n$ three-body model, which includes the coupling between last neutron states and the various $2p$-$2h$ configurations in $^9$Li due to the tensor and pairing correlations. The three-body scattering states of $^{11}$Li are described by using the combined methods of the complex scaling and the Lippmann-Schwinger equation. The calculated breakup cross section successfully reproduces the experiments. The large mixing of the s-state in the halo ground state of $^{11}$Li is shown to play an important role in explanation of shape and strength of the breakup cross section. In addition, we predict the invariant mass spectra for binary subsystems of $^{11}$Li. It is found that the two kinds of virtual s-states of $^9$Li-$n$ and $n$-$n$ systems in the final three-body states of $^{11}$Li largely contribute to make low-lying peaks in the invariant mass spectra. On the other hand, in the present analysis, it is suggested that the contributions of the p-wave resonances of $^{10}$Li is hardly confirmed in the spectra.
We present a recently developed theory for the inclusive breakup of three-fragment projectiles within a four-body spectator model cite{CarPLB2017}, for the treatment of the elastic and inclusive non-elastic break up reactions involving weakly bound t hree-cluster nuclei in $A,(a,b),X$ / $a = x_1 + x_2 + b$ collisions. The four-body theory is an extension of the three-body approaches developed in the 80s by Ichimura, Autern and Vincent (IAV) cite{IAV1985}, Udagawa and Tamura (UT) cite{UT1981} and Hussein and McVoy (HM) cite{HM1985}. We expect that experimentalists shall be encouraged to search for more information about the $x_{1} + x_{2}$ system in the elastic breakup cross section and that also further developments and extensions of the surrogate method will be pursued, based on the inclusive non-elastic breakup part of the $b$ spectrum.
We propose a new method to describe three-body breakups of nuclei, in which the Lippmann-Schwinger equation is solved combining with the complex scaling method. The complex-scaled solutions of the Lippmann-Schwinger equation (CSLS) enables us to trea t boundary conditions of many-body open channels correctly and to describe a many-body breakup amplitude from the ground state. The Coulomb breakup cross section from the 6He ground state into 4He+n+n three-body decaying states as a function of the total excitation energy is calculated by using CSLS, and the result well reproduces the experimental data. Furthermore, the two-dimensional energy distribution of the E1 transition strength is obtained and an importance of the 5He(3/2-) resonance is confirmed. It is shown that CSLS is a promising method to investigate correlations of subsystems in three-body breakup reactions of the weakly-bound nuclei.
We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_ {mathrm{scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{mathrm{% scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا