ﻻ يوجد ملخص باللغة العربية
Properties of the three-nucleon bound state are examined in the Faddeev formalism, in which the quark-model nucleon-nucleon interaction is explicitly incorporated to calculate the off-shell T-matrix. The most recent version, fss2, of the Kyoto-Niigata quark-model potential yields the ground-state energy ^3H=-8.514 MeV in the 34 channel calculation, when the np interaction is used for the nucleon-nucleon interaction. The charge root mean square radii of the ^3H and ^3He are 1.72 fm and 1.90 fm, respectively, including the finite size correction of the nucleons. These values are the closest to the experiments among many results obtained by detailed Faddeev calculations employing modern realistic nucleon-nucleon interaction models.
Previously we calculated the binding energies of the triton and hypertriton, using an SU_6 quark-model interaction derived from a resonating-group method of two baryon clusters. In contrast to the previous calculations employing the energy-dependent
We upgrade a SU_6 quark-model description for the nucleon-nucleon and hyperon-nucleon interactions by improving the effective meson-exchange potentials acting between quarks. For the scalar- and vector-meson exchanges, the momentum-dependent higher-o
Quark-model nucleon-nucleon and hyperon-nucleon interactions by the Kyoto- Niigata group are applied to the hypertriton calculation in a new three-cluster Faddeev formalism using the two-cluster resonating-group method kernels. The most recent model,
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The i
Two-pion exchange parity-violating nucleon-nucleon interactions from recent effective field theories and earlier fully covariant approaches are investigated. The potentials are compared with the idea to obtain better insight on the role of low-energy