ﻻ يوجد ملخص باللغة العربية
Enforcing exact conservation laws instead of average ones in statistical thermal models for relativistic heavy ion reactions gives raise to so called canonical effect, which can be used to explain some enhancement effects when going from elementary (e.g. pp) or small (pA) systems towards large AA systems. We review the recently developed method for computation of canonical statistical thermodynamics, and give an insight when this is needed in analysis of experimental data.
We study the effect of enforcing exact conservation of charges in statistical models of particle production for systems as large as those relevant to relativistic heavy ion collisions. By using a numerical method developed for small systems, we have
We review the results from the various hydrodynamical and transport models on the collective flow observables from AGS to RHIC energies. A critical discussion of the present status of the CERN experiments on hadron collective flow is given. We emphas
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr
The nonextensive one-dimensional version of a hydrodynamical model for multiparticle production processes is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and characterized by a nonextensivity
We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We imp