ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross sections for nuclide production in 1 GeV proton-irradiated 208-Pb

65   0   0.0 ( 0 )
 نشر من قبل Stepan G. Mashnik
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

114 cross sections for nuclide production in a 1.0 GeV proton-irradiated thin 208Pb target have been measured by the direct gamma spectrometry method using a high-resolution Ge detector. The gamma spectra were processed by the GENIE-2000 code. The ITEP-developed SIGMA code was used together with the PCNUDAT nuclear decay database to identify the gamma lines and to determine the cross sections. The 27Al(p,x)22Na reaction was used to monitor the proton flux. Results of a feasibility study of the auxiliary 27Al(p,x)24Na and 27Al(p,x)7Be monitor reactions in the 0.07-2.6 GeV proton-energy range are presented as well. Most of the experimental data have been analyzed by the LAHET (with ISABEL and Bertini options), CEM95, CEM2k, INUCL, CASCADE, CASCADE/INPE, and YIELDX codes that simulate hadron-nucleus interactions.



قيم البحث

اقرأ أيضاً

114 - S. Majumdar , P. K. Deb , 2001
A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering from ${}^{208}$Pb of protons with energies in the range 30 to 300 MeV.
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the incident energy range of $30 lsim E_{rm in} lsim 400 $ MeV, and it is found that the model reliably reproduces the $sigma_R$ in $30 lsim E_{rm in} lsim 100 $ MeV and $250 lsim E_{rm in} lsim 400$ MeV. item[Aim] We determine $R_n$ and the neutron skin thickness $R_{rm skin}$ of ${}^{208}{rm Pb}$ by using high-quality $sigma_R$ data for the $p+{}^{208}{rm Pb}$ scattering in $30 leq E_{rm in} leq 100$ MeV. The theoretical model is the Kyushu $g$-matrix folding model with the densities calculated with Gongny-D1S HFB (GHFB) with the angular momentum projection (AMP). item[Results] The Kyushu $g$-matrix folding model with the GHFB+AMP densities underestimates $sigma_{rm R}$ in $30 leq E_{rm in} leq 100$~MeV only by a factor of 0.97. Since the proton radius $R_p$ calculated with GHFB+AMP agrees with the precise experimental data of 5.444 fm, the small deviation of the theoretical result from the data on $sigma_R$ allows us to scale the GHFB+AMP neutron density so as to reproduce the $sigma_R$ data. In $E_{rm in}$ = 30--100 MeV, the experimental $sigma_R$ data can be reproduced by assuming the neutron radius of ${}^{208}{rm Pb}$ as $R_n$ = $5.722 pm 0.035$ fm. item[Conclusion] The present result $R_{rm skin}$ = $0.278 pm 0.035$ fm is in good agreement with the recent PREX-II result of $r_{rm skin}$ = $0.283pm 0.071$ fm.
Results of experimental cross sections for residual nuclide production in interactions of 200 MeV/A 12C ions and 0.2 and 2.6 GeV protons with nat-Cu, 59Co, and 27Al targets are presented. The residual products are measured at ITEP (Moscow) by gamma-s pectrometry with a detector of 1.8 keV resolution in the 1332 keV 60Co gamma-line. The measured data are compared with predictions by the LANL (Los Alamos) code LAQGSM+GEM2 and JINR (Dubna) code CASCADE.
The Bayesian neural network (BNN) method is used to construct a predictive model for fragment prediction of proton induced spallation reactions with the guidance of a simplified EPAX formula. Compared to the experimental data, it is found that the BN N + sEPAX model can reasonably extrapolate with less information compared with BNN method. The BNN + sEPAX method provides a new approach to predict the energy-dependent residual cross sections produced in proton-induced spallation reactions from tens of MeV/u up to several GeV/u.
In ultraperipheral collisions (UPC) of nuclei the impact of Lorentz-contracted electromagnetic fields of collision partners leads to their excitations. In case of heavy nuclei the emission of neutrons is a main deexcitation channel and forward neutro ns emitted in UPC were detected at the Relativistic Heavy-Ion Collider (RHIC) and at the Large Hadron Collider (LHC) by means of Zero Degree Calorimeters. However, the excitation of low-lying discrete nuclear states is also possible in UPC below the neutron separation energy. In this work by means of the Weizsacker-Williams method the data on nuclear resonance fluorescence (NRF) induced by real photons in 208 Pb are used to model the excitations of discrete levels in colliding nuclei. Due to Lorentz boosts one can expect that deexcitation photons with energies up to 40 GeV and 300 GeV are emitted in very forward direction, respectively, at the LHC and at the Future Circular Collider (FCC-hh). Energy, rapidity and angular distributions of such photons are calculated in the laboratory system, which can be used for monitoring of collider luminosity or triggering particle production in UPC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا