ترغب بنشر مسار تعليمي؟ اضغط هنا

Meson-Meson Scattering in the Quark Model: Spin Dependence and Exotic Channels

56   0   0.0 ( 0 )
 نشر من قبل Ted Barnes
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply a quark interchange model to spin-dependent and exotic meson-meson scattering. The model includes the complete set of standard quark model forces, including OGE spin-orbit and tensor and scalar confinement spin-orbit. Scattering amplitudes derived assuming SHO and Coulomb plus linear plus hyperfine meson wavefunctions are compared. In I=2 pi pi we find approximate agreement with the S-wave phase shift from threshold to 1.5 GeV, where we predict an extremum that is supported by the data. Near threshold we find rapid energy dependence that may reconcile theoretical estimates of small scattering lengths with experimental indications of larger ones based on extrapolation of measurements at moderate kpi^2. In PsV scattering we find that the quark-quark L*S and T forces map into L*S and T meson-meson interactions, and the P-wave L*S force is large. Finally we consider scattering in J^PC-exotic channels, and note that some of the Deck effect mechanisms suggested as possible nonresonant origins of the pi_1(1400) signal are not viable in this model.



قيم البحث

اقرأ أيضاً

Short-range quark-quark correlations are introduced into the quark-meson coupling (QMC) model phenomenologically. We study the effect of the correlations on the structure of the nucleon in dense nuclear matter. With the addition of correlations, the saturation curve for symmetric nuclear matter is much improved at high density.
70 - C. Downum 2006
We demonstrate the calculation of the coupling constants and form factors required by effective hadron lagrangians using the quark model. These relations follow from equating expressions for strong transition amplitudes in the two approaches. As exam ples we derive the NNm nucleon-meson coupling constants and form factors for m = pi, eta, eta, sigma, a_0, omega and rho, using harmonic oscillator quark model meson and baryon wavefunctions and the 3P0 decay model; this is a first step towards deriving a quark-based model of the NN force at all separations. This technique should be useful in the application of effective lagrangians to processes in which the lack of data precludes the direct determination of coupling constants and form factors from experiment.
An improved quark mass density- dependent model with the non-linear scalar sigma field and the $omega$-meson field is presented. We show that the present model can describe saturation properties, the equation of state, the compressibility and the eff ective nuclear mass of nuclear matter under mean field approximation successfully. The comparison of the present model and the quark-meson coupling model is addressed.
We have calculated the temperature dependence of shear $eta$ and bulk $zeta$ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-$pi$ and quark-$sigma$ loops at finite te mperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses, and quark-meson couplings are obtained in the Nambu--Jona-Lasinio model. We found a non-trivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios $eta/s$ and $zeta/s$, where $s$ is the entropy density (also determined in the Nambu--Jona-Lasinio model in the quasi-particle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for $eta/s$ has a minimum very close to the conjectured AdS/CFT lower bound, $eta/s = 1/4pi$.
The quark-meson-coupling model is used to study droplet formation from the liquid-gas phase transition in cold asymmetric nuclear matter. The critical density and proton fraction for the phase transition are determined in the mean field approximation . Droplet properties are calculated in the Thomas-Fermi approximation. The electromagnetic field is explicitly included and its effects on droplet properties are studied. The results are compared with the ones obtained with the NL1 parametrization of the non-linear Walecka model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا