ﻻ يوجد ملخص باللغة العربية
The cross section and decay angular distributions for the coherent phi meson photoproduction on the deuteron have been measured for the first time up to a squared four-momentum transfer t =(p_{gamma}-p_{phi})^2 =-2 GeV^2/c^2, using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are compared with predictions from a re-scattering model. In a framework of vector meson dominance, the data are consistent with the total phi-N cross section sigma_{phi N} at about 10 mb. If vector meson dominance is violated, a larger sigma_{phi N} is possible by introducing larger t-slope for the phi N to phi N process than that for the gamma N to phi N process. The decay angular distributions of the phi are consistent with helicity conservation.
The differential cross sections and decay angular distributions for coherent $phi$-meson photoproduction from helium-4 have been measured for the first time at forward angles with linearly polarized photons in the energy range $E_{gamma} = text{1.685
The total cross sections were measured for coherent double neutral-pion photoproduction on the deuteron at incident energies below 0.9 GeV for the first time. No clear resonance-like behavior is observed in the excitation function for $W_{gamma d}=2.
The scarce data systematics and complexity of deuteron interactions demand the update of both the experimental database and theoretical frame of deuteron activation cross sections. Various reactions induced by neutrons and protons following the deute
Photoproduction of $phi$-meson on protons was studied by means of linearly polarized photons at forward angles in the low-energy region from threshold to $E_{gamma}$= 2.37 GeV. The differential cross sections at $t = -|t|_{min}$ do not increase smoot
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These