ﻻ يوجد ملخص باللغة العربية
The CLAS experiment E02-104, part of the EG2 run at Jefferson Lab, was performed to study the hadronization process using semi inclusive deep inelastic scattering off nuclei. Electron beam energy of 5 GeV and the CLAS large acceptance detector were used to study charged pion production. The high luminosity available at Jefferson Lab and the CLAS large acceptance are key factors for such measurements allowing high statistics and therefore multidimensional analyses of the data. Both the multiplicity ratio and the transverse momentum broadening for carbon, iron and lead relative to deuterium are measured. Preliminary results for positive pions are discussed.
The semi-inclusive deep inelastic scattering of electrons off a nucleus A with detection of a slow nucleus (A-1) in the ground or low excitation states, i.e. the process A(e,e(A-1))X, can provide useful information on the origin of the EMC effect and
We summarize the discussion on the possibilities of doing inclusive and semi-inclusive deep inelastic scattering experiments at CEBAF with beam energy of the order of 10 GeV.
First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with t
Using a novel analysis technique, the gluon polarisation in the nucleon is re-evaluated using the longitudinal double-spin asymmetry measured in the cross section of semi-inclusive single-hadron muoproduction with photon virtuality $Q^2>1~({rm GeV}/c
The effects of the final state interaction in slow proton production in semi inclusive deep inelastic scattering processes off nuclei, A(e,ep)X, are investigated in details within the spectator and target fragmentation mechanisms; in the former mecha