ﻻ يوجد ملخص باللغة العربية
The results of investigations dealing with the charge topology of the fragments produced in peripheral dissociation of relativistic $^8$B nuclei in emulsion are presented. 55 events of peripheral dissociation of the $^8$B nucleus were selected from the events which do not involve the production of the target-nucleus fragments and mesons (`` whiterqrq ~stars). A leading contribution of the $^8$B$to^7$Be+p mode having the lowest energy threshold was revealed on the basis of those events. Information on the relative probability of dissociation modes with a larger multiplicity was obtained. The dissociation of a $^7$Be core in $^8$B indicates an analogy with that of the free $^7$Be nucleus.par The transverse momentum distributions of the fragments from the $^8$B$to^7$Be+p dissociation mode were obtained. Their small average value, $<$P$_t>$= 52 MeV/c, in the c.m.s. suggests a low binding energy of the external proton in the $^8$B nucleus. An indication for a strong azimuthal correlation of the $^7$Be and p fragments was got.
The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions - nuclear white stars. A complete pattern of therelativistic dissociation of a $^8$B nucleus with targ
The fragment separator ACCULINNA in the G. N. Flerov Laboratory of Nuclear Reactions of JINR was used to expose a nuclear track emulsion to a beam of radioactive $^{8}$He nuclei of energy of 60 MeV and enrichment of about 80%. Measurements of decays
Possibilities of the nuclear emulsion technique for the study of the systems of several relativistic fragments produced in the peripheral interactions of relativistic nuclei are discussed. The interactions of the $^{10}$B and $^{9}$Be nuclei in emuls
The charge topology in the fragmentation of $^{10}$C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of $^{10}$C nuclei, about 82% of events are associated with the channel $^{10}$C $rig
Nuclear track emulsion is exposed to a beam of radioactive $^8$He nuclei with an energy of 60 MeV and enrichment of about 80% at the ACCULINNA separator. Measurements of 278 decays of the $^8$He nuclei stopped in the emulsion allow the potential of t