ﻻ يوجد ملخص باللغة العربية
The inorganic crystal scintillator CsI(Tl) has been used for low energy neutrino and Dark Matter experiments, where the intrinsic radiopurity is an issue of major importance. Low-background data were taken with a CsI(Tl) crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape discrimination capabilities of the crystal, as well as the temporal and spatial correlations of the events, provide powerful means of measuring the intrinsic radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event selection algorithms are described, with which the decay half-lives of Po-218, Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the contamination levels, their concentration gradients with the crystal growth axis, and the uniformity among different crystal samples, are reported. The radiopurity in the U-238 and Th-232 series are comparable to those of the best reported in other crystal scintillators. Significant improvements in measurement sensitivities were achieved, similar to those from dedicated massive liquid scintillator detector. This analysis also provides in situ measurements of the detector performance parameters, such as spatial resolution, quenching factors, and data acquisition dead time.
The normalized $^{238}$U(n,f)/$^{235}$U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber from the reaction threshold to $30$~MeV. The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows
The $^{238}$U to $^{235}$U fission cross section ratio has been determined at n_TOF up to $sim$1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets have been collected and compared. They are a
Quantal diffusion mechanism of nucleon exchange is studied in the central collisions of $^{238}$U + $^{238}$U in the framework of the stochastic mean-field (SMF) approach. For bombarding energies considered in this work, the di-nuclear structure is m
The PROSPECT and STEREO collaborations present a combined measurement of the pure $^{235}$U antineutrino spectrum, without site specific corrections or detector-dependent effects. The spectral measurements of the two highest precision experiments at
A detailed investigation on the relative isotopic distributions has been carried out for the first time in case of even-even correlated fission fragments for the $^{235}$U($n_{th}$,$f$) fission reaction. High-statistics data were obtained in a prompt