ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Scattering From High-Momentum Neutrons in Deuterium

109   0   0.0 ( 0 )
 نشر من قبل Sebastian E. Kuhn
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results from an experiment measuring the semi-inclusive reaction $d(e,ep_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratorys Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function $F_{2n}^{eff}$ was extracted as a function of $W^{*}$ and the scaling variable $x^{*}$ at extreme backward kinematics, where effects of FSI appear to be smaller. For $p_{s}>400$ MeV/c, where the neutron is far off-shell, the model overestimates the value of $F_{2n}^{eff}$ in the region of $x^{*}$ between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.



قيم البحث

اقرأ أيضاً

We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter $A^V_{ed}$ was measured for the $^2 v ec{rm H}(vec e,e^prime p)n$ reaction for missing momenta up to 350 MeV/$c$ at a four-momentum transfer squared of 0.21 (GeV/c)$^2$. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.
We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm$^{-1}$. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for m issing momenta up to 150 MeV/$c$ with a tensor polarized $^2$H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.
We report the measurement of the beam-vector and tensor asymmetries $A^V_{ed}$ and $A^T_d$ in quasielastic $(vec{e}, e^{prime}p)$ electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500~MeV/c. Da ta were collected simultaneously over a momentum transfer range $0.1< Q^2<0.5$~(GeV/c)$^2$ with the Bates Large Acceptance Spectrometer Toroid using an internal deuterium gas target, polarized sequentially in both vector and tensor states. The data are compared with calculations. The beam-vector asymmetry $A^V_{ed}$ is found to be directly sensitive to the $D$-wave component of the deuteron and have a zero-crossing at a missing momentum of about 320~MeV/c, as predicted. The tensor asymmetry $A^T_d$ at large missing momentum is found to be dominated by the influence of the tensor force in the neutron-proton final-state interaction. The new data provide a strong constraint on theoretical models.
Ultra-cold neutrons (UCN), neutrons with energies low enough to be confined by the Fermi potential in material bottles, are playing an increasing role in measurements of fundamental properties of the neutron. The ability to manipulate UCN with materi al guides and bottles, magnetic fields, and gravity can lead to experiments with lower systematic errors than have been obtained in experiments with cold neutron beams. The UCN densities provided by existing reactor sources limit these experiments. The promise of much higher densities from solid deuterium sources has led to proposed facilities coupled to both reactor and spallation neutron sources. In this paper we report on the performance of a prototype spallation neutron-driven solid deuterium source. This source produced bottled UCN densities of 145 +/-7 UCN/cm3, about three times greater than the largest bottled UCN densities previously reported. These results indicate that a production UCN source with substantially higher densities should be possible.
143 - D. J. Hamilton , V. H. Mamyan , 2004
Compton scattering from the proton was investigated at s=6.9 (GeV/c)**2 and t=-4.0 (GeV/c)**2 via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were meas ured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا