ﻻ يوجد ملخص باللغة العربية
Excited states in $^{20}$O were populated in the reaction $^{10}$Be($^{14}$C,$alpha$) at Florida State University. Charged particles were detected with a particle telescope consisting of 4 annularly segmented Si surface barrier detectors and $gamma$ radiation was detected with the FSU $gamma$ detector array. Five new states were observed below 6 MeV from the $alpha$-$gamma$ and $alpha$-$gamma$-$gamma$ coincidence data. Shell model calculations suggest that most of the newly observed states are core-excited 1p-1h excitations across the $N = Z = 8$ shell gap. Comparisons between experimental data and calculations for the neutron-rich O and F isotopes imply a steady reduction of the $p$-$sd$ shell gap as neutrons are added.
The reaction 54Fe(d_pol,p)55Fe was studied at the Munich Q3D spectrograph with a 14 MeV polarized deuteron beam. Excitation energies, angular distributions and analyzing powers were measured for 39 states up to 4.5 MeV excitation energy. Spin and par
Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei ne
Background: Collective excitations of nuclei and their theoretical descriptions provide an insight into the structure of nuclei. Replacing traditional phenomenological interactions with unitarily transformed realistic nucleon-nucleon interactions inc
We perform a quantitative study of the microscopic effective shell-model interactions in the valence sd shell, obtained from modern nucleon-nucleon potentials, chiral N3LO, JISP16 and Daejeon16, using No-Core Shell-Model wave functions and the Okubo-
A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross