ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Spin Transfer Observables in Antiproton-Proton -> Antilambda-Lambda at 1.637 GeV/c

55   0   0.0 ( 0 )
 نشر من قبل Kent Paschke
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.



قيم البحث

اقرأ أيضاً

The reaction anti-proton + proton -> anti-Lambda + Lambda -> anti-proton + pi^+ + proton + pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with t he self-analyzing property of Lambda/anti-Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-Lambda + Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.
We report the first polarization transfer measurements for exclusive hyperon production reactions. The normal spin transfer coefficient DNN for pp -> p K+ Lambda is large and negative for forward Lambda production at a beam momentum of 3.67 GeV/c, a result qualitatively consistent with expectations for a mechanism dominated by kaon-exchange and rescattering. The sign of DNN is opposite to that observed in the fragmentation regime for inclusive Lambda production at much higher energies.
We present results from Experiment E917 for antilambda and antiproton production in Au+Au collisions at 11.7 A GeV. We have measured invariant spectra and yields for both species in central and peripheral collisions. We find that the antilambda/antip roton ratio near mid-rapidity increases from 0.26+0.19-0.15 in peripheral collisions to 3.6+4.7-1.8 in central collisions, a value that is substantially larger than current theoretical estimates.
The longitudinal spin transfer $D_{LL}$ to $Lambda$ and $bar{Lambda}$ hyperons produced in high-energy polarized proton--proton collisions is expected to be sensitive to the helicity distribution functions of strange quarks and anti-quarks of the pro ton, and to longitudinally polarized fragmentation functions. We report an improved measurement of $D_{LL}$ from data obtained at a center-of-mass energy of $sqrt{s}$ = 200 GeV with the STAR detector at RHIC. The data have an approximately twelve times larger figure-of-merit than prior results and cover $|eta|<$ 1.2 in pseudo-rapidity with transverse momenta $p_T$ up to 6 GeV/c. In the forward scattering hemisphere at largest $p_T$, the longitudinal spin transfer is found to be $D_{LL}$ = -0.036 $pm$ 0.048 (stat) $pm$ 0.013(sys) for $Lambda$ hyperons and $D_{LL}$ = 0.032 $pm$ 0.043,(stat) $pm$ 0.013,(sys) for $bar{Lambda}$ anti-hyperons. The dependences on $eta$ and $p_T$ are presented and compared with model evaluations.
The inclusive production of {Lambda} hyperons in proton-proton collisions at $sqrt{s}$ = 3.18 GeV was measured with HADES at the GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt. The experimental data are compared to a data-based model for individual exclusive {Lambda} production channels in the same reaction. The contributions of intermediate resonances such as {Sigma}(1385), {Delta}++ or N* are considered in detail. In particular, the result of a partial wave analysis is accounted for the abundant pK$^+${Lambda} final state. Model and data show a reasonable agreement at mid rapidities, while a difference is found for larger rapidities. A total {Lambda} production cross section in p+p collisions at $sqrt{s}$ = 3.18 GeV of {sigma}(pp $to$ {Lambda} + X) = 207.3 $pm$ 1.3 +6.0 -7.3 (stat.) $pm$ 8.4 (syst.) +0.4 -0.5 (model) {mu}b is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا