ﻻ يوجد ملخص باللغة العربية
In prl 84, 258 (2000), Mateos conjectured that current reversal in a classical deterministic ratchet is associated with bifurcations from chaotic to periodic regimes. This is based on the comparison of the current and the bifurcation diagram as a function of a given parameter for a periodic asymmetric potential. Barbi and Salerno, in pre 62, 1988 (2000), have further investigated this claim and argue that, contrary to Mateos claim, current reversals can occur also in the absence of bifurcations. Barbi and Salernos studies are based on the dynamics of one particle rather than the statistical mechanics of an ensemble of particles moving in the chaotic system. The behavior of ensembles can be quite different, depending upon their characteristics, which leaves their results open to question. In this paper we present results from studies showing how the current depends on the details of the ensemble used to generate it, as well as conditions for convergent behavior (that is, independent of the details of the ensemble). We are then able to present the converged current as a function of parameters, in the same system as Mateos as well as Barbi and Salerno. We show evidence for current reversal without bifurcation, as well as bifurcation without current reversal. We conjecture that it is appropriate to correlate abrupt changes in the current with bifurcation, rather than current reversals, and show numerical evidence for our claims.
We show that strongly localized wave functions occur around classical bifurcations. Near a saddle node bifurcation the scaling of the inverse participation ratio on Plancks constant and the dependence on the parameter is governed by an Airy function.
We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic
We analyze the origin and properties of the chaotic dynamics of two atomic ensembles in a driven-dissipative experimental setup, where they are collectively damped by a bad cavity mode and incoherently pumped by a Raman laser. Starting from the mean-
We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.
We study entanglement in two coupled quartic oscillators. It is shown that the entanglement, as measured by the von Neumann entropy, increases with the classical chaos parameter for generic chaotic eigenstates. We consider certain isolated periodic o