ﻻ يوجد ملخص باللغة العربية
Let X be a complex algebraic variety, and L(X) be the scheme of formal arcs in X. Let f be an arc whose image is not contained in the singularities of X. We show that the formal neighborhood of f in L(X) admits a decomposition into a product of an infinite-dimensional smooth piece, and a piece isomorphic to the formal neighborhood of a closed point of a scheme of finite type.
In previous work, the authors have developed a geometric theory of fundamental strata to study connections on the projective line with irregular singularities of parahoric formal type. In this paper, the moduli space of connections that contain regul
In this paper, we define a new cohomology theory for multiplicative Hom-pre-Lie algebras which controls deformations of Hom-pre-Lie algebra structure. This new cohomology is a natural one considering the structure map $alpha$. We show this new cohomo
We study arc spaces and jet schemes of generic determinantal varieties. Using the natural group action, we decompose the arc spaces into orbits, and analyze their structure. This allows us to compute the number of irreducible components of jet scheme
We introduce a notion of embedding codimension of an arbitrary local ring, establish some general properties, and study in detail the case of arc spaces of schemes of finite type over a field. Viewing the embedding codimension as a measure of singula
We interpret all Maurer-Cartan elements in the formal Hochschild complex of a small dg category which is cohomologically bounded above in terms of torsion Morita deformations. This solves the curvature problem, i.e. the phenomenon that such Maurer-Ca