ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametric estimation for planar random flights observed at discrete times

69   0   0.0 ( 0 )
 نشر من قبل Alesssandro De Gregorio
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We deal with a planar random flight ${(X(t),Y(t)),0<tleq T}$ observed at $n+1$ equidistant times $t_i=iDelta_n,i=0,1,...,n$. The aim of this paper is to estimate the unknown value of the parameter $lambda$, the underlying rate of the Poisson process. The planar random flights are not markovian, then we use an alternative argument to derive a pseudo-maximum likelihood estimator $hat{lambda}$ of the parameter $lambda$. We consider two different types of asymptotic schemes and show the consistency, the asymptotic normality and efficiency of the estimator proposed. A Monte Carlo analysis for small sample size $n$ permits us to analyze the empirical performance of $hat{lambda}$. A different approach permits us to introduce an alternative estimator of $lambda$ which is consistent, asymptotically normal and asymptotically efficient without the request of other assumptions.



قيم البحث

اقرأ أيضاً

This paper is devoted to two different two-time-scale stochastic approximation algorithms for superquantile estimation. We shall investigate the asymptotic behavior of a Robbins-Monro estimator and its convexified version. Our main contribution is to establish the almost sure convergence, the quadratic strong law and the law of iterated logarithm for our estimates via a martingale approach. A joint asymptotic normality is also provided. Our theoretical analysis is illustrated by numerical experiments on real datasets.
Nonparametric latent structure models provide flexible inference on distinct, yet related, groups of observations. Each component of a vector of $d ge 2$ random measures models the distribution of a group of exchangeable observations, while their dep endence structure regulates the borrowing of information across different groups. Recent work has quantified the dependence between random measures in terms of Wasserstein distance from the maximally dependent scenario when $d=2$. By solving an intriguing max-min problem we are now able to define a Wasserstein index of dependence $I_mathcal{W}$ with the following properties: (i) it simultaneously quantifies the dependence of $d ge 2$ random measures; (ii) it takes values in [0,1]; (iii) it attains the extreme values ${0,1}$ under independence and complete dependence, respectively; (iv) since it is defined in terms of the underlying Levy measures, it is possible to evaluate it numerically in many Bayesian nonparametric models for partially exchangeable data.
The coefficient function of the leading differential operator is estimated from observations of a linear stochastic partial differential equation (SPDE). The estimation is based on continuous time observations which are localised in space. For the as ymptotic regime with fixed time horizon and with the spatial resolution of the observations tending to zero, we provide rate-optimal estimators and establish scaling limits of the deterministic PDE and of the SPDE on growing domains. The estimators are robust to lower order perturbations of the underlying differential operator and achieve the parametric rate even in the nonparametric setup with a spatially varying coefficient. A numerical example illustrates the main results.
This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.
123 - Yandi Shen , Fang Han , 2020
We establish exponential inequalities for a class of V-statistics under strong mixing conditions. Our theory is developed via a novel kernel expansion based on random Fourier features and the use of a probabilistic method. This type of expansion is n ew and useful for handling many notorious classes of kernels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا