ترغب بنشر مسار تعليمي؟ اضغط هنا

Random conformal snowflakes

333   0   0.0 ( 0 )
 نشر من قبل Dmitry Beliaev
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In many problems of classical analysis extremal configurations appear to exhibit complicated fractal structure. This makes it much harder to describe extremals and to attack such problems. Many of these problems are related to the multifractal analysis of harmonic measure. We argue that, searching for extremals in such problems, one should work with random fractals rather than deterministic ones. We introduce a new class of fractals random conformal snowflakes and investigate its properties developing tools to estimate spectra and showing that extremals can be found in this class. As an application we significantly improve known estimates from below on the extremal behaviour of harmonic measure, showing how to constuct a rather simple snowflake, which has a spectrum quite close to the conjectured extremal value.

قيم البحث

اقرأ أيضاً

50 - D. Beliaev 2007
In this paper we construct random conformal snowflakes with large integral means spectrum at different points. These new estimates are significant improvement over previously known lower bound of the universal spectrum. Our estimates are within 5-10 percent from the conjectured value of the universal spectrum.
We study almost sure separating and interpolating properties of random sequences in the polydisc and the unit ball. In the unit ball, we obtain the 0-1 Komolgorov law for a sequence to be interpolating almost surely for all the Besov-Sobolev spaces $ B_{2}^{sigma}left(mathbb{B}_{d}right)$, in the range $0 < sigmaleq1 / 2$. For those spaces, such interpolating sequences coincide with interpolating sequences for their multiplier algebras, thanks to the Pick property. This is not the case for the Hardy space $mathrm{H}^2(mathbb{D}^d)$ and its multiplier algebra $mathrm{H}^infty(mathbb{D}^d)$: in the polydisc, we obtain a sufficient and a necessary condition for a sequence to be $mathrm{H}^infty(mathbb{D}^d)$-interpolating almost surely. Those two conditions do not coincide, due to the fact that the deterministic starting point is less descriptive of interpolating sequences than its counterpart for the unit ball. On the other hand, we give the $0-1$ law for random interpolating sequences for $mathrm{H}^2(mathbb{D}^d)$.
The subject of this paper is Beurlings celebrated extension of the Riemann mapping theorem cite{Beu53}. Our point of departure is the observation that the only known proof of the Beurling-Riemann mapping theorem contains a number of gaps which seem i nherent in Beurlings geometric and approximative approach. We provide a complete proof of the Beurling-Riemann mapping theorem by combining Beurlings geometric method with a number of new analytic tools, notably $H^p$-space techniques and methods from the theory of Riemann-Hilbert-Poincare problems. One additional advantage of this approach is that it leads to an extension of the Beurling-Riemann mapping theorem for analytic maps with prescribed branching. Moreover, it allows a complete description of the boundary regularity of solutions in the (generalized) Beurling-Riemann mapping theorem extending earlier results that have been obtained by PDE techniques. We finally consider the question of uniqueness in the extended Beurling-Riemann mapping theorem.
315 - D. Beliaev , S. Smirnov 2008
In this paper we rigorously compute the average multifractal spectrum of harmonic measure on the boundary of SLE clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا