ترغب بنشر مسار تعليمي؟ اضغط هنا

The Freidlin-Wentzell LDP with rapidly growing coefficients

335   0   0.0 ( 0 )
 نشر من قبل Pavel Chigansky
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large Deviations Principle (LDP) is verified for a homogeneous diffusion process with respect to a Brownian motion $B_t$, $$ X^eps_t=x_0+int_0^tb(X^eps_s)ds+ epsint_0^tsigma(X^eps_s)dB_s, $$ where $b(x)$ and $sigma(x)$ are are locally Lipschitz functions with super linear growth. We assume that the drift is directed towards the origin and the growth rates of the drift and diffusion terms are properly balanced. Nonsingularity of $a=sigmasigma^*(x)$ is not required.



قيم البحث

اقرأ أيضاً

256 - Jaykov Foukzon 2014
Generalized Large deviation principles was developed for Colombeau-Ito SDE with a random coefficients. We is significantly expand the classical theory of large deviations for randomly perturbed dynamical systems developed by Freidlin and Wentzell.Usi ng SLDP approach, jumps phenomena, in financial markets, also is considered. Jumps phenomena, in financial markets is explained from the first principles, without any reference to Poisson jump process. In contrast with a phenomenological approach we explain such jumps phenomena from the first principles, without any reference to Poisson jump process.
148 - N.V. Krylov , E. Priola 2008
We consider a second-order parabolic equation in $bR^{d+1}$ with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Holder continuous in the space variables. We show that g lobal Schauder estimates hold even in this case. The proof introduces a new localization procedure. Our results show that the constant appearing in the classical Schauder estimates is in fact independent of the $L_{infty}$-norms of the lower order coefficients. We also give a proof of uniqueness which is of independent interest even in the case of bounded coefficients.
A new class of explicit Milstein schemes, which approximate stochastic differential equations (SDEs) with superlinearly growing drift and diffusion coefficients, is proposed in this article. It is shown, under very mild conditions, that these explici t schemes converge in $mathcal L^p$ to the solution of the corresponding SDEs with optimal rate.
The paper investigates existence and uniqueness for a stochastic differential equation (SDE) with distributional drift depending on the law density of the solution. Those equations are known as McKean SDEs. The McKean SDE is interpreted in the sense of a suitable singular martingale problem. A key tool used in the investigation is the study of the corresponding Fokker-Planck equation.
A conjecture appears in cite{milsteinscheme}, in the form of a remark, where it is stated that it is possible to construct, in a specified way, any high order explicit numerical schemes to approximate the solutions of SDEs with superlinear coefficien ts. We answer this conjecture affirmatively for the case of order 1.5 approximations and show that the suggested methodology works. Moreover, we explore the case of having H{o}lder continuous derivatives for the diffusion coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا