ﻻ يوجد ملخص باللغة العربية
The characteristic function has been an important tool for studying completely non unitary contractions on Hilbert spaces. In this note, we consider completely non-coisometric contractive tuples of commuting operators on a Hilbert space $clh$. We show that the characteristic function, which is now an operator valued analytic function on the open Euclidean unit ball in $mathbb{C}^n$, is a complete unitary invariant for such a tuple. We prove that the characteristic function satisfies a natural transformation law under biholomorphic mappings of the unit ball. We also characterize all operator-valued analytic functions which arise as characteristic functions of pure commuting contractive tuples.
An operator $T$ is called a 3-isometry if there exists operators $B_1(T^*,T)$ and $B_2(T^*,T)$ such that [Q(n)=T^{*n}T^n=1+nB_1(T^*,T)+n^2 B_2(T^*,T)] for all natural numbers $n$. An operator $J$ is a Jordan operator of order $2$ if $J=U+N$ where $U$
We determine when contractive idempotents in the measure algebra of a locally compact group commute. We consider a dynamical version of the same result. We also look at some properties of groups of measures whose identity is a contactive idempotent.
A general form of contractive idempotent functionals on coamenable locally compact quantum groups is obtained, generalising the result of Greenleaf on contractive measures on locally compact groups. The image of a convolution operator associated to a
We study the matrix range of a tuple of compact operators on a Hilbert space and examine the notions of minimal, nonsingular, and fully compressed tuples. In this pursuit, we refine previous results by characterizing nonsingular compact tuples in ter
Let $q = e^{i theta} in mathbb{T}$ (where $theta in mathbb{R}$), and let $u,v$ be $q$-commuting unitaries, i.e., $u$ and $v$ are unitaries such that $vu = quv$. In this paper we find the optimal constant $c = c_theta$ such that $u,v$ can be dilated t