ترغب بنشر مسار تعليمي؟ اضغط هنا

Some new surfaces with $p_g = q = 0$

124   0   0.0 ( 0 )
 نشر من قبل Fabrizio M. E. Catanese
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by a question by D. Mumford : can a computer classify all surfaces with $p_g = 0$ ? we try to show the complexity of the problem. We restrict it to the classification of the minimal surfaces of general type with $p_g = 0, K^2 = 8$ which are constructed by the Beauville construction, namely, which are quotients of a product of curves by the free action of a finite group G acting separately on each component. We think that man and computer will soon solve this classification problem. In the paper we classify completely the 5 cases where the group G is abelian. For these surfaces, we describe the moduli space (sometimes it is just a real point), and the first homology group. We describe also 5 examples where the group G is non abelian. Three of the latter examples had been previously described by R. Pardini.



قيم البحث

اقرأ أيضاً

We show that general triple planes with p_g=q=0 belong to at most 12 families, that we call surfaces of type I,..., XII, and we prove that the corresponding Tschirnhausen bundle is direct sum of two line bundles in cases I, II, III, whereas is a rank 2 Steiner bundle in the remaining cases. We also provide existence results and explicit constructions for surfaces of type I,..., VII, recovering all classical examples and discovering several new ones. In particular, triple planes of type VII provide counterexamples to a wrong claim made in 1942 by Bronowski.
The first main purpose of this paper is to contribute to the existing knowledge about the complex projective surfaces $S$ of general type with $p_g(S) = 0$ and their moduli spaces, constructing 19 new families of such surfaces with hitherto unknown f undamental groups. We also provide a table containing all the known such surfaces with K^2 <=7. Our second main purpose is to describe in greater generality the fundamental groups of smooth projective varieties which occur as the minimal resolutions of the quotient of a product of curves by the action of a finite group. We classify, in the two dimensional case, all the surfaces with q=p_g = 0 obtained as the minimal resolution of such a quotient, having rational double points as singularities. We show that all these surfaces give evidence to the Bloch conjecture.
130 - Daniel Bragg 2019
Deligne showed that every K3 surface over an algebraically closed field of positive characteristic admits a lift to characteristic 0. We show the same is true for a twisted K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces, which are particularly interesting when the characteristic divides the order of the Brauer class. We also give an algebraic construction of certain moduli spaces of twisted K3 surfaces over $mathrm{Spec}mathbf{Z}$ and apply our deformation theory to study their geometry. As an application of our results, we show that every derived equivalence between twisted K3 surfaces in positive characteristic is orientation preserving.
137 - Fabrizio Catanese 2017
We give new contributions to the existence problem of canonical surfaces of high degree. We construct several families (indeed, connected components of the moduli space) of surfaces $S$ of general type with $p_g=5,6$ whose canonical map has image $Si gma$ of very high degree, $d=48$ for $p_g=5$, $d=56$ for $p_g=6$. And a connected component of the moduli space consisting of surfaces $S$ with $K^2_S = 40, p_g=4, q=0$ whose canonical map has always degree $geq 2$, and, for the general surface, of degree $2$ onto a canonical surface $Y$ with $K^2_Y = 12, p_g=4, q=0$. The surfaces we consider are SIP s, i.e. surfaces $S$ isogenous to a product of curves $(C_1 times C_2 )/ G$; in our examples the group $G$ is elementary abelian, $G = (mathbb{Z}/m)^k$. We also establish some basic results concerning the canonical maps of any surface isogenous to a product, basing on elementary representation theory.
For every integer $a geq 2$, we relate the K-stability of hypersurfaces in the weighted projective space $mathbb{P}(1,1,a,a)$ of degree $2a$ with the GIT stability of binary forms of degree $2a$. Moreover, we prove that such a hypersurface is K-polystable and not K-stable if it is quasi-smooth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا