ترغب بنشر مسار تعليمي؟ اضغط هنا

Fat 4-polytopes and fatter 3-spheres

208   0   0.0 ( 0 )
 نشر من قبل Greg Kuperberg
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف David Eppstein




اسأل ChatGPT حول البحث

We introduce the fatness parameter of a 4-dimensional polytope P, defined as phi(P)=(f_1+f_2)/(f_0+f_3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4-polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness phi(P)>5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.



قيم البحث

اقرأ أيضاً

129 - Andrew Newman 2020
A two-step model for generating random polytopes is considered. For parameters $d$, $m$, and $p$, the first step is to generate a simple polytope $P$ whose facets are given by $m$ uniform random hyperplanes tangent to the unit sphere in $mathbb{R}^d$ , and the second step is to sample each vertex of $P$ independently with probability $p$ and let $Q$ be the convex hull of the sampled vertices. We establish results on how well $Q$ approximates the unit sphere in terms of $m$ and $p$ as well as asymptotics on the combinatorial complexity of $Q$ for certain regimes of $p$.
In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known as the ``$3^d$-conjecture. It is well-known that the three conjectures hold in dimensions d leq 3. We show that in dimension 4 only conjectures A and B are valid, while conjecture C fails. Furthermore, we show that both conjectures B and C fail in all dimensions d geq 5.
A simple graph G=(V,E) is 3-rigid if its generic bar-joint frameworks in R3 are infinitesimally rigid. Block and hole graphs are derived from triangulated spheres by the removal of edges and the addition of minimally rigid subgraphs, known as blocks, in some of the resulting holes. Combinatorial characterisations of minimal $3$-rigidity are obtained for these graphs in the case of a single block and finitely many holes or a single hole and finitely many blocks. These results confirm a conjecture of Whiteley from 1988 and special cases of a stronger conjecture of Finbow-Singh and Whiteley from 2013.
In this paper, we study Lefschetz properties of Artinian reductions of Stanley-Reisner rings of balanced simplicial $3$-polytopes. A $(d-1)$-dimensional simplicial complex is said to be balanced if its graph is $d$-colorable. If a simplicial complex is balanced, then its Stanley-Reisner ring has a special system of parameters induced by the coloring. We prove that the Artinian reduction of the Stanley-Reisner ring of a balanced simplicial $3$-polytope with respect to this special system of parameters has the strong Lefschetz property if the characteristic of the base field is not two or three. Moreover, we characterize $(2,1)$-balanced simplicial polytopes, i.e., polytopes with exactly one red vertex and two blue vertices in each facet, such that an analogous property holds. In fact, we show that this is the case if and only if the induced graph on the blue vertices satisfies a Laman-type combinatorial condition.
Results of Koebe (1936), Schramm (1992), and Springborn (2005) yield realizations of $3$-polytopes with edges tangent to the unit sphere. Here we study the algebraic degrees of such realizations. This initiates the research on constrained realization spaces of polytopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا