ﻻ يوجد ملخص باللغة العربية
We introduce the fatness parameter of a 4-dimensional polytope P, defined as phi(P)=(f_1+f_2)/(f_0+f_3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4-polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness phi(P)>5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.
A two-step model for generating random polytopes is considered. For parameters $d$, $m$, and $p$, the first step is to generate a simple polytope $P$ whose facets are given by $m$ uniform random hyperplanes tangent to the unit sphere in $mathbb{R}^d$
In 1989 Kalai stated the three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known as the ``$3^d$-conjecture. It is well-known that the three conjectures
A simple graph G=(V,E) is 3-rigid if its generic bar-joint frameworks in R3 are infinitesimally rigid. Block and hole graphs are derived from triangulated spheres by the removal of edges and the addition of minimally rigid subgraphs, known as blocks,
In this paper, we study Lefschetz properties of Artinian reductions of Stanley-Reisner rings of balanced simplicial $3$-polytopes. A $(d-1)$-dimensional simplicial complex is said to be balanced if its graph is $d$-colorable. If a simplicial complex
Results of Koebe (1936), Schramm (1992), and Springborn (2005) yield realizations of $3$-polytopes with edges tangent to the unit sphere. Here we study the algebraic degrees of such realizations. This initiates the research on constrained realization spaces of polytopes.