ﻻ يوجد ملخص باللغة العربية
We analyze random walks on a class of semigroups called ``left-regular bands. These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable and we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of these semigroup walks, we construct a random walk on the maximal chains of any distributive lattice, as well as two random walks associated with any matroid. The examples include a q-analogue of the Tsetlin library. The multiplicities of the eigenvalues in the matroid walks are ``generalized derangement numbers, which may be of independent interest.
Dealing with finite Markov chains in discrete time, the focus often lies on convergence behavior and one tries to make different copies of the chain meet as fast as possible and then stick together. There is, however, a very peculiar kind of discrete
We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.
We introduce the space of virtual Markov chains (VMCs) as a projective limit of the spaces of all finite state space Markov chains (MCs), in the same way that the space of virtual permutations is the projective limit of the spaces of all permutations
We investigate the dissipativity properties of a class of scalar second order parabolic partial differential equations with time-dependent coefficients. We provide explicit condition on the drift term which ensure that the relative entropy of one par
The aim of this paper is to develop a general theory for the class of skip-free Markov chains on denumerable state space. This encompasses their potential theory via an explicit characterization of their potential kernel expressed in terms of family