ﻻ يوجد ملخص باللغة العربية
Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk will visit a particular lattice site before being absorbed. Results are obtained for lattice tubes of arbitrary size and each of the regular lattice types; square, triangular and honeycomb. The results include an adjustable parameter to model the effects of strain, such as surface curvature, on the surface diffusion. Results for the triangular lattice tubes and the honeycomb lattice tubes model diffusion of adatoms on single walled zig-zag carbon nano-tubes with open ends.
The problem of a random walk on a finite triangular lattice with a single interior source point and zig-zag absorbing boundaries is solved exactly. This problem has been previously considered intractable.
We consider the generating function of the algebraic area of lattice walks, evaluated at a root of unity, and its relation to the Hofstadter model. In particular, we obtain an expression for the generating function of the n-th moments of the Hofstadt
The Continuous-Time Random Walk (CTRW) formalism can be adapted to encompass stochastic processes with memory. In this article we will show how the random combination of two different unbiased CTRWs can give raise to a process with clear drift, if on
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the
We propose a formula for the enumeration of closed lattice random walks of length $n$ enclosing a given algebraic area. The information is contained in the Kreft coefficients which encode, in the commensurate case, the Hofstadter secular equation for