ﻻ يوجد ملخص باللغة العربية
We consider a higher derivative effective theory for an Abelian gauge field in three dimensions, which represents the result of integrating out heavy matter fields interacting with a classical gauge field in a parity-conserving way. We retain terms containing up to two derivatives of $F_{mu u}$, but make no assumption about the strength of this field. We then quantize the gauge field, and compute the one-loop effective action for a constant $fmn$. The result is explicitly evaluated for the case of a constant magnetic field.
We present some results about the interplay between the chiral and deconfinement phase transitions in parity-conserving QED3 (with N flavours of massless 4 component fermions) at finite temperature. Following Grignani et al (Phys. Rev. D53, 7157 (199
We evaluate the fermion propagator in parity-conserving QED_3 with N flavours, in the context of an IR domain approximation. This provides results which are non-perturbative in the loopwise expansion sense. We include fermion-loop effects, and show t
We review the current strategies to search for generic SUSY models with R-parity conservation in the ATLAS and CMS detectors at the LHC. The discovery reach in early data will be presented for the different search channels based on missing transverse
We consider a pionless effective theory with dibaryon fields for the description of the weak process involving two nucleons. We construct leading order Lagrangians that contain nucleon-dibaryon weak coupling constants. We calculate the physical obser
We extend the Zee model, where tiny neutrino masses are generated at the one loop level, to a supersymmetric model with R-parity conservation. It is found that the neutrino mass matrix can be consistent with the neutrino oscillation data thanks to th