ﻻ يوجد ملخص باللغة العربية
We show that manifolds of fixed points, which are generated by exactly marginal operators, are common in N=1 supersymmetric gauge theory. We present a unified and simple prescription for identifying these operators, using tools similar to those employed in two-dimensional N=2 supersymmetry. In particular we rely on the work of Shifman and Vainshtein relating the $bt$-function of the gauge coupling to the anomalous dimensions of the matter fields. Finite N=1 models, which have marginal operators at zero coupling, are easily identified using our approach. The method can also be employed to find manifolds of fixed points which do not include the free theory; these are seen in certain models with product gauge groups and in many non-renormalizable effective theories. For a number of our models, S-duality may have interesting implications. Using the fact that relevant perturbations often cause one manifold of fixed points to flow to another, we propose a specific mechanism through which the N=1 duality discovered by Seiberg could be associated with the duality of finite N=2 models.
A formulation of (non-anticommutative) N=1/2 supersymmetric U(N) gauge theory in noncommutative space is studied. We show that at one loop UV/IR mixing occurs. A generalization of Seiberg-Witten map to noncommutative and non-anticommutative supersp
A solution to the infinite coupling problem for N=2 conformal supersymmetric gauge theories in four dimensions is presented. The infinitely-coupled theories are argued to be interacting superconformal field theories (SCFTs) with weakly gauged flavor
We compute the supersymmetric partition function of $mathcal{N}{=}1$ supersymmetric gauge theories with an $R$-symmetry on $mathcal{M}_4 cong mathcal{M}_{g,p}times S^1$, a principal elliptic fiber bundle of degree $p$ over a genus-$g$ Riemann surface
Similarly to the bosonic Liouville theory, the $mathcal{N}=2$ supersymmetric Liouville theory was conjectured to be equipped with the duality that exchanges the superpotential and the Kahler potential. The conjectured duality, however, seems to suffe
We calculate the instanton partition function of the four-dimensional N=2* SU(N) gauge theory in the presence of a generic surface operator, using equivariant localization. By analyzing the constraints that arise from S-duality, we show that the effe