ﻻ يوجد ملخص باللغة العربية
We prove a generalization of the Verlinde formula to fermionic rational conformal field theories. The fusion coefficients of the fermionic theory are equal to sums of fusion coefficients of its bosonic projection. In particular, fusion coefficients of the fermionic theory connecting two conjugate Ramond fields with the identity are either one or two. Therefore, one is forced to weaken the axioms of fusion algebras for fermionic theories. We show that in the special case of fermionic W(2,d)-algebras these coefficients are given by the dimensions of the irreducible representations of the horizontal subalgebra on the highest weight. As concrete examples we discuss fusion algebras of rational models of fermionic W(2,d)-algebras including minimal models of the $N=1$ super Virasoro algebra as well as $N=1$ super W-algebras SW(3/2,d).
We define Modular Linear Differential Equations (MLDE) for the level-two congruence subgroups $Gamma_vartheta$, $Gamma^0(2)$ and $Gamma_0(2)$ of $text{SL}_2(mathbb Z)$. Each subgroup corresponds to one of the spin structures on the torus. The pole st
In this paper, we apply the K-theory scheme of classifying the topological insulators/superconductors to classify the topological classes of the massive multi-flavor fermions in anti-de Sitter (AdS) space. In the context of AdS/CFT correspondence, th
Generalizing our ideas in [arXiv:1006.3313], we explain how topologically-twisted N=2 gauge theory on a four-manifold with boundary, will allow us to furnish purely physical proofs of (i) the Atiyah-Floer conjecture, (ii) Munozs theorem relating quan
The correlators of free four dimensional conformal field theories (CFT4) have been shown to be given by amplitudes in two-dimensional $so(4,2)$ equivariant topological field theories (TFT2), by using a vertex operator formalism for the correlators. W
Supersymmetric theories with the same bosonic content but different fermions, aka emph{twins}, were thought to exist only for supergravity. Here we show that pairs of super conformal field theories, for example exotic $mathcal{N}=3$ and $mathcal{N}=1