ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary description of Planckian scattering in curved spacetimes

120   0   0.0 ( 0 )
 نشر من قبل Martin O'Loughlin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that for an eikonal limit of gravity in a space-time of any dimension with a non-vanishing cosmological constant, the Einstein -- Hilbert action reduces to a boundary action. This boundary action describes the interaction of shock-waves up to the point of evolution at which the forward light-cone of a collision meets the boundary of the space-time. The conclusions are quite general and in particular generalize the previous work of E. and H. Verlinde. The role of the off-diagonal Einstein action in removing the bulk part of the action is emphasised. We discuss the sense in which our result is a particular example of holography and also the relation of our solutions in $AdS$ to those of Horowitz and Itzhaki.



قيم البحث

اقرأ أيضاً

There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic sy mmetries which supports massive matter fields. In particular, one can not impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [arXiv:1503.02680] we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hol e represents a bound-state of many soft gravitons at the quantum critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole formation. These are the tree-level N-graviton scattering S-matrix elements in a kinematical regime (called classicalization limit) where the two incoming ultra-Planckian gravitons produce a large number N of soft gravitons. We compute these amplitudes by using the Kawai-Lewellen-Tye relations, as well as scattering equations and string theory techniques. We discover that this limit reveals the key features of the microscopic corpuscular black hole N-portrait. In particular, the perturbative suppression factor of a N-graviton final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the quantum criticality value, whereas final states with different value of N are either suppressed or excluded by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole dominance over other final states including non-black hole classical object. In the parameterization of the classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic number N of external legs. We demonstrate matching and complementarity between the string theory and field theory in different large-s and large-N regimes.
101 - Siddharth G. Prabhu 2020
We formulate a version of the double copy for classical fields in curved spacetimes. We provide a correspondence between perturbative solutions to the bi-adjoint scalar equations and those of the Yang-Mills equations in position space. At the linear level, we show that there exists a map between these solutions for maximally symmetric spacetime backgrounds, that provides every Yang-Mills solution by the action of an appropriate differential operator on a bi-adjoint scalar solution. Given the existence of a linearized map, we show that it is possible to cast the solutions of the Yang-Mills equations at arbitrary perturbation order in terms of the corresponding bi-adjoint scalar solutions. This all-order map is reminiscent of the flat space BCJ double copy, and works for any curved spacetime where the perturbative expansion holds. We show that these results have the right flat space limit, and that the correspondence is agnostic to the choice of gauge.
A classical solution where the (scalar) field value moves by an ${cal O}(1)$ range in Planck units is believed to signal the breakdown of Effective Field Theory (EFT). One heuristic argument for this is that such a field will have enough energy to be inside its own Schwarzschild radius, and will result in collapse. In this paper, we consider an inverse problem: what kind of field ranges arise during the gravitational collapse of a classical field? Despite the fact that collapse has been studied for almost a hundred years, most of the discussion is phrased in terms of fluid stress tensors, and not fields. An exception is the scalar collapse made famous by Choptuik. We re-consider Choptuik-like systems, but with the emphasis now on the evolution of the scalar. We give strong evidence that generic spherically symmetric collapse of a massless scalar field leads to super-Planckian field movement. But we also note that in every such supercritical collapse scenario, the large field range is hidden behind an apparent horizon. We also discuss how the familiar perfect fluid models for collapse like Oppenheimer-Snyder and Vaidya should be viewed in light of our results.
We classify the asymptotic charges of a class of polyhomogeneous asymptotically-flat spacetimes with finite shear, generalising recent results on smooth asymptotically-flat spacetimes. Polyhomogenous spacetimes are a formally consistent class of spac etimes that do not satisfy the well-known peeling property. As such, they constitute a more physical class of asymptotically-flat spacetimes compared to the smooth class. In particular, we establish that the generalised conserved non-linear Newman-Penrose charges that are known to exist for such spacetimes are a subset of asymptotic BMS charges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا