ﻻ يوجد ملخص باللغة العربية
The excess of solar-neutrino events above 13 MeV that has been recently observed by Superkamiokande can be explained by vacuum oscillations (VO). If the boron neutrino flux is 20% smaller than the standard solar model (SSM) prediction and the chlorine signal is assumed 30% (or 3.5 sigmas) higher than the measured one, there exists a VO solution that reproduces both the observed boron neutrino spectrum, including the high energy distortion, and the other measured neutrino rates. This solution might already be testable by the predicted anomalous seasonal variation of the gallium signal. Its most distinct signature, a large anomalous seasonal variation of Be7 neutrino flux, can be easily observed by the future detectors, BOREXINO and LENS.
We find that magnetic neutrino-electron scattering is unaffected by oscillations for vacuum mixing of Dirac neutrinos with only diagonal moments and for Majorana neutrinos with two flavors. For MSW mixing, these cases again obtain, though the effecti
Atmospheric neutrinos at low energies, $E lsim 500$ MeV, is known to be a rich source of information of lepton mixing parameters. We formulate a simple perturbative framework to elucidate the characteristic features of neutrino oscillation at around
We are going back to the roots of the original solar neutrino problem: analysis of data from solar neutrino experiments. The application of standard deviation analysis (SDA) and diffusion entropy analysis (DEA) to the SuperKamiokande I and II data re
We propose to exploit the angular distribution of the positrons emitted in the inverse beta decay to extract a possible antineutrino signal from the Superkamiokande background. From the statistics collected in just 101.9 days one obtains a model inde
Expressions for neutrino oscillations contain a high degree of symmetry, but typical forms for the oscillation probabilities mask these symmetries. We elucidate the $2^7=128$ symmetries of the vacuum parameters and draw connections to the choice of d