ترغب بنشر مسار تعليمي؟ اضغط هنا

Atmospheric Neutrino Tests of Neutrino Oscillation Mechanisms

125   0   0.0 ( 0 )
 نشر من قبل Osamu Yasuda
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent Super-Kamiokande data on the atmospheric neutrino anomaly are used to test various mechanisms for neutrino oscillations. It is found that the current atmospheric neutrino data alone cannot rule out any particular mechanism. Future long-baseline experiments should play an important role in identifying the underlying neutrino oscillation mechanism.



قيم البحث

اقرأ أيضاً

122 - Tarak Thakore 2013
The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL@INO) for the study of atmospheric neutrinos. Using the detector resolutions and efficiencies obtained by the INO collaboration from a full-detector GEANT4- based simulation, we determine the reach of this experiment for the measurement of the atmospheric neutrino mixing parameters ($sin^2 theta_{23}$ and $|Delta m_{32}^2 |$). We also explore the sensitivity of this experiment to the deviation of $theta_{23}$ from maximal mixing, and its octant.
The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.
We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10% - 30%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.
We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $Delta m^2_{32}=2.72^{+0.19}_{-0.20}times 10^{-3},mathrm{eV}^2$ and $sin^2theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.
Neutrino oscillation is discussed with emphases placed more on its conceptual aspects. After reviewing the two conventional formulations, referred to here as the same-energy prescription and the same-momentum prescription, wave packet treatments are developed for each of these two prescriptions. Both wave packets localized in space and those in time are considered, and, by invoking relativistic kinematics as well, the necessary conditions for oscillation to occur are derived, which appear to have a form more well-defined and quantitative than what have been noted before. Some phenomenological implications suggested by the wave packet treatments are briefly mentioned. Finally, as a possible third prescription, the same-velocity prescription is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا