ﻻ يوجد ملخص باللغة العربية
A light stop, with an R-parity-violating coupling $lambda_{131}$, has been suggested as an explanation of the excess in high-$Q^2$ neutral current events observed at the HERA collider. We show that in this scheme a corresponding excess in charged current events --- such as that reported by the H1 Collaboration --- can appear naturally, without calling for the presence of light sleptons or additional R-parity-violating couplings, if there exists a chargino lighter than the stop. The predicted event shapes agree well with the data. The relevant region of parameter space is identified, taking into account constraints coming from precision electroweak measurements, atomic parity violation and recent searches for first-generation leptoquarks at the Tevatron collider.
An excess of events at large Q2 with a positron in the final state has been observed at HERA which, if confirmed, would be a signal of new physics. It is not clear at present if a signal of comparable rate is also seen in the charged current channel
Charm production in charged current deep inelastic scattering has been measured for the first time in $e^{pm}p$ collisions, using data collected with the ZEUS detector at HERA, corresponding to an integrated luminosity of $358 pb^{-1}$. Results are p
High-Q^2 NC and CC DIS cross sections have been measured by H1 and ZEUS at HERA. Both NC and CC results based on data taken during the year 1994-2000 are in good agreement with Standard Model expectations. The structure function xF_3 is extracted fro
Speculations on mechanisms which might be responsible for events with an isolated high p_T lepton, a hadron jet and missing energy, as observed in the H1 experiment at HERA, are discussed.
We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual $W^{pm}$ b