ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spin and Flavor Content of Intrinsic Sea Quarks

87   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic quark-antiquark pairs generated by the minimal energy nonperturbative meson-baryon fluctuations in the nucleon sea provide a consistent framework for understanding a number of empirical anomalies observed in the deep inelastic quark-parton structure of nucleons: the flavor asymmetry of the nucleon sea implied by the violation of Gottfried sum rule, the proton spin problem implied by the violation of the Ellis-Jaffe sum rule, and the outstanding conflict between two different determinations of the strange quark sea in the nucleon.



قيم البحث

اقرأ أيضاً

We discuss two topics related to the flavor structure of the nucleon sea. The first is on the identification of light-quark intrinsic sea from the comparison between recent data and the intrinsic sea model by Brodsky et al. Good agreement between the theory and data allows a separation of the intrinsic from the extrinsic sea components. The magnitudes of the up, down, and strange intrinsic seas have been extracted. We then discuss the flavor structure and the Bjorken-x dependence of the connected sea (CS) and disconnected sea (DS). We show that recent data together with input from lattice QCD allow a separation of the CS from the DS components of the light quark sea.
318 - Harald Fritzsch 2011
The texture zero mass matrices for the quarks and leptons describe very well the flavor mixing of the quarks and leptons. We can calculate the angles of the unitarity triangle. We expect the angle alpha of the unitarity triangle to be 90 degrees. The masses of the neutrinos can be calculated - they are very small, the largest neutrino mass is 0.05 eV. We calculated the matrix element of the mixing matrix, relevant for the reactor mixing angle. It can be measured in the near future in the DAYA BAY experiment.
We present the first direct lattice calculation of the isovector sea-quark parton distributions using the formalism developed recently by one of the authors. We use $N_f=2+1+1$ HISQ lattice gauge ensembles (generated by MILC Collaboration) and clover valence fermions with pion mass 310 MeV. We are able to obtain the qualitative features of the nucleon sea flavor structure even at this large pion mass: We observe violation of the Gottfried sum rule, indicating $overline{d}(x) > overline{u}(x)$; the helicity distribution obeys $Delta overline{u}(x) > Delta overline{d}(x)$, which is consistent with the STAR data at large and small leptonic pseudorapidity.
60 - Harald Fritzsch 2021
We discuss a new mass matrix with specific texture zeros for the quarks. The three flavor mixing angles for the quarks are functions of the quark masses and can be calculated. The following ratios among CKM matrix elements are given by ratios of quar k masses: |Vtd/Vts| q md /ms and |Vub/Vcb| p mu/mc . Also we can calculate two CKM matrix elements: |Vcb| |Vts| 2 (ms/mb ). This relation as well as the relation |Vtd/Vts| q md /ms are in good agreement with the experimental data. There is a problem with the relation |Vub/Vcb| p mu/mc , probably due to wrong estimates of the quark masses mu and m
The cross section of associated production of a Z boson with heavy flavor jets in $pp$ collisions is calculated using the SHERPA Monte Carlo generator and the analytical combined QCD approach based on kt-factorization at small x and conventional coll inear QCD at large x. A satisfactory description of the ATLAS and CMS data on the $p_T$ spectra of Z bosons and c-jets in the whole rapidity, y, region is shown. Searching for the intrinsic charm (IC) contribution in these processes, which could be visible at large y > 1.5, we study observables very sensitive to non-zero IC contributions and less affected by theoretical QCD scale uncertainties. One of such observables is the so-called double ratio: the ratio of the differential cross section of Z + c production in the central region of |y| < 1.5 and in the forward region 1.5 < |y| < 2.5, divided by the same ratio for Z + b production. These observables could be more promising for the search of IC at LHC as compared to the observables considered earlier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا