ترغب بنشر مسار تعليمي؟ اضغط هنا

The KLN Theorem and Soft Radiation in Gauge Theories: Abelian Case

392   0   0.0 ( 0 )
 نشر من قبل Michael Sotiropoulos
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a covariant formulation of the Kinoshita, Lee, Nauenberg (KLN) theorem for processes involving the radiation of soft particles. The role of the disconnected diagrams is explored and a rearrangement of the perturbation theory is performed such that the purely disconnected diagrams are factored out. The remaining effect of the disconnected diagrams results in a simple modification of the usual Feynman rules for the S-matrix elements. As an application, we show that when combined with the Low theorem, this leads to a proof of the absense of the $1/Q$ corrections to inclusive processes (like the Drell-Yan process). In this paper the abelian case is discussed to all orders in the coupling.



قيم البحث

اقرأ أيضاً

163 - Temple He , Prahar Mitra 2020
We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector o f the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.
Using elementary considerations of Lorentz invariance, Bose symmetry and BRST invariance, we argue why the decay of a massive color-octet vector state into a pair of on-shell massless gluons is possible in a non-Abelian SU(N) Yang-Mills theory, we co nstrain the form of the amplitude of the process and offer a simple understanding of these results in terms of effective-action operators.
A detailed description of the method for analytical evaluation of the three-loop contributions to renormalization group functions is presented. This method is employed to calculate the charge renormalization function and anomalous dimensions for non- Abelian gauge theories with fermions in the three-loop approximation. A three-loop expression for the effective charge of QCD is given. Charge renormalization effects in the SU(4)-supersymmetric gauge model is shown to vanish at this level. A complete list of required formulas is given in Appendix. The above-mentioned results of three-loop calculations have been published by the present authors (with A.Yu., Zharkov and L.V., Avdeev) in 1980 in Physics Letters B. The present text, which treats the subject in more details and contains a lot of calculational techniques, has also been published in 1980 as the JINR Communication E2-80-483.
We construct chiral theories with the smallest number $n_chi$ of Weyl fermions that form an anomaly-free set under various Abelian gauge groups. For the $U(1)$ group, where $n_chi = 5$, we show that the general solution to the anomaly equations is a set of charges given by cubic polynomials in three integer parameters. For the $U(1) times U(1)$ gauge group we find $n_chi = 6$, and derive the general solution to the anomaly equations, in terms of 6 parameters. For $U(1) times U(1) times U(1)$ we show that $n_chi = 8$, and present some families of solutions. These chiral gauge theories have potential applications to dark matter models, right-handed neutrino interactions, and other extensions of the Standard Model. As an example, we present a simple dark sector with a natural mass hierarchy between three dark matter components.
Asymptotic particle states in four-dimensional celestial scattering amplitudes are labelled by their $SL(2,mathbb{C})$ Lorentz/conformal weights $(h,bar{h})$ rather than the usual energy-momentum four-vector. These boost eigenstates involve a superpo sition of all energies. As such, celestial gluon (or photon) scattering cannot obey the usual (energetically) soft theorems. In this paper we show that tree-level celestial gluon scattering, in theories with sufficiently soft UV behavior, instead obeys conformally soft theorems involving $h to 0$ or $bar{h} to 0$. Unlike the energetically soft theorem, the conformally soft theorem cannot be derived from low-energy effective field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا