ﻻ يوجد ملخص باللغة العربية
Although the distributions of sea quarks and antiquarks generated by leading-twist QCD evolution through gluon splitting $g rightarrow bar q q$ are necessarily CP symmetric, the distributions of nonvalence quarks and antiquarks which are intrinsic to the nucleons bound state wavefunction need not be identical. In this paper we investigate the sea quark/antiquark asymmetries in the nucleon wavefunction which are generated by a light-cone model of energetically-favored meson-baryon fluctuations. The model predicts striking quark/antiquark asymmetries in the momentum and helicity distributions for the down and strange contributions to the proton structure function: the intrinsic $d$ and $s$ quarks in the proton sea are predicted to be negatively polarized, whereas the intrinsic $bar d$ and $bar s$ antiquarks give zero contributions to the proton spin. Such a picture is supported by experimental phenomena related to the proton spin problem and the violation of the Ellis-Jaffe sum rule. The light-cone meson-baryon fluctuation model also suggests a structured momentum distribution asymmetry for strange quarks and antiquarks which could be relevant to an outstanding conflict between two different determinations of the strange quark sea in the nucleon. The model predicts an excess of intrinsic $d bar d$ pairs over $u bar u$ pairs, as supported by the Gottfried sum rule violation. We also predict that the intrinsic charm and anticharm helicity and momentum distributions are not identical.
We study the helicity distributions of light flavor quark-antiquark ($q bar{q}$) pairs in the nucleon sea. The valence quarks are handled by adopting the light-cone SU(6) quark-spectator-diquark model and the sea $q bar{q}$ pairs are treated from sta
We derive the nucleon non-perturbative sea-quark distributions coming from a composite model involving quarks and hadronic degrees of freedom. The model predicts a definite structured quark-antiquark asymmetry in the nucleon sea.
A precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets is reported. Over 140,000 Drell-Yan muon pairs with dimuon mass M_{mu+ mu-} >= 4.5 GeV/c^2 were recorded. From these data,
We use the meson cloud model to calculate $bar{d}(x) - bar{u}(x)$ and $ bar{d}(x)/bar{u}(x)$ in the proton. We show that a modification of the symmetric, perturbative part of the light quark sea provides better agreement with the ratio $ bar{d}(x)/bar{u}(x).
The Drell-Yan cross section ratios, $sigma(p+d)/sigma(p+p)$, measured in Fermilab E866, have led to the first determination of $bar d(x) / bar u(x)$, $bar d(x) - bar u(x)$, and the integral of $bar d(x) - bar u(x)$ for the proton over the range $0.02