ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonleptonic weak decays of charmed mesons

115   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A previous analysis of two-body Cabibbo allowed nonleptonic decays of $D^0$ mesons and of Cabibbo allowed and first-forbidden decays of $D^+$ and $D_s^+$ has been adjourned using more recent experimental data and extended to the Cabibbo forbidden decays of $D^0$. Annihilation and W-exchange contributions as well as final state interaction effects (assumed to be dominated by nearby resonances) have been included and are in fact crucial to obtain a reasonable agreement with the experimental data, which show large flavour SU(3) violations. New fitting parameters are necessary to describe rescattering effects for Cabibbo forbidden $D^0$ decays, given the lack of experimental informations on isoscalar resonances. We keep their number to a minimum - three - using phenomenologically based considerations. We also discuss CP violating asymmetries.



قيم البحث

اقرأ أيضاً

We give a systematic study of ${bf B}_cto {bf B}_n V$ decays, where ${bf B}_c$ and $ {bf B}_n$ correspond to the anti-triplet charmed and octet baryons, respectively, while $V$ stand for the vector mesons. We calculate the color-symmetric contributio ns to the decays from the effective Hamiltonian with the factorization approach and extract the anti-symmetric ones based on the experimental measurements and $SU(3)_F$ flavor symmetry. We find that most of the existing experimental data for ${bf B}_cto {bf B}_n V$ are consistent with our fitting results. We present all the branching ratios of the Cabbibo allowed, singly Cabbibo suppressed and doubly Cabbibo suppressed decays of ${bf B}_cto {bf B}_n V$. The decay parameters for the daughter baryons and mesons in ${bf B}_cto {bf B}_n V$ are also evaluated. In particular, we point out that the Cabbibo allowed decays of $Lambda_c^+ to Lambda^0 rho^+$ and $ Xi_c^0 to Xi^- rho^+$ as well as the singly Cabbibo suppressed ones of $Lambda_c^+ to Lambda^0 K^{*+}$, $Xi_c^+ to Sigma^+ phi$ and $Xi_c^0to Xi^- K^{*+}$ have large branching ratios and decay parameters with small uncertainties, which can be tested by the experimental searches at the charm facilities.
The BaBar Collaboration has recently reported branching fractions for semileptonic decays of the $B$ meson into final states with charged and neutral $D_{1}(2420)$ and $D_{2}^{ast}(2460)$, two narrow orbitally excited charmed mesons. We evaluate thes e branching fractions within the framework of a constituent quark model in two steps, one which involves a semileptonic decay and the other one mediated by a strong process. Our results are in agreement with the experimental data.
In this contribution we compute some nonleptonic and semileptonic decay widths of $B_s$ mesons, working in the context of constituent quark models cite{Albertus:2014gba, Albertus:2014bfa}. For the case of semileptonic decays we consider reactions lea ding to kaons or different $J^pi$ $D_s$ mesons. The study of nonleptonic decays has been done in the factorisation approximation and includes the final states enclosed in Table 2.
Within the framework of covariant confined quark model, we compute the transition form factors of $D$ and $D_s$ mesons decaying to light scalar mesons $f_0(980)$ and $a_0(980)$. The transition form factors are then utilized to compute the semileptoni c branching fractions. We study the channels namely, $D_{(s)}^+ to f_0(980) ell^+ u_ell$ and $D to a_0(980) ell^+ u_ell$ for $ell = e$ and $mu$. For computation of semileptonic branching fractions, we consider the $a_0(980)$ meson to be the conventional quark-antiquark structure and the $f_0(980)$ meson as the admixture of $sbar{s}$ and light quark-antiquark pairs. Our findings are found to support the recent BESIII data.
We analyze $D to P V$, $D to PP$ and $D to VV$ decays within a model developed to describe the semileptonic decays $D to V l u_l$ and $Dto P l u_l$. This model combines the heavy quark effective Lagrangian and chiral perturbation theory. We determi ne amplitudes for decays in which the direct weak annihilation of the initial $D$ meson is absent or negligible, and in which the final state interactions are small. This analysis reduces the arbitrariness in the choice of model parameters. The calculated decay widths are in good agreement with the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا