ترغب بنشر مسار تعليمي؟ اضغط هنا

Resummed Mass Distribution for Jets Initiated by Massive Quarks

244   0   0.0 ( 0 )
 نشر من قبل Giancarlo Ferrera
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We resum the invariant mass distribution of jets initiated by massive quarks in next-to-leading logarithmic approximation and beyond in heuristic way. We find that the inclusion of mass terms, in the N-moment space, results in the universal factor delta_N(Q^2;m^2), taking into account dead-cone effects and soft radiation characteristic of massive charges. This factor multiplies the massless jet distribution function J_N(Q^2). The variable N is rescaled by the mass correction parameter r = m^2/Q^2 << 1 with respect to the standard massless case, being m the quark mass and Q the hard scale. The functions A(alpha_S) and B(alpha_S), appear with a minus sign suppressing collinear effects at large N, as expected. In the same region, soft radiation not collinearly enhanced, characteristic of massive charges, makes its appearance with the function D(alpha_S). Phenomenological applications, such as the resummation of b --> c l nu decay spectra or the inclusion of beauty mass effects in t --> b W decays, are briefly sketched.

قيم البحث

اقرأ أيضاً

We compute in the heavy quark effective theory the soft coefficient D_2 entering the resummation of next-to-next-to-leading threshold logarithms for jets initiated by a quark with a small mass compared to the hard scale of the process. We find comple te agreement with a previous computation in full QCD. Contrary to our previous guess, this coefficient turns out to be different from that one entering heavy flavor decay or heavy flavor fragmentation.
Expressions for Sudakov form factors for heavy quarks are presented. They are used to construct resummed jet rates in electron-positron annihilation. Predictions are given for production of bottom quarks at LEP and top quarks at the Linear Collider.
At high values of the pair invariant mass the differential cross section for top-quark pair production at hadron colliders factorizes into soft, hard, and fragmentation functions. In this paper we calculate the next-to-next-to-leading-order (NNLO) co rrections to the soft function appearing in this factorization formula, thus providing the final piece needed to evaluate at NNLO the differential cross section in the virtual plus soft approximation in the large invariant-mass limit. Technically, this amounts to evaluating the vacuum expectation value of a soft Wilson loop operator built out of light-like Wilson lines for each of the four partons participating in the hard scattering process, with a certain constraint on the total energy of the soft radiation. Our result turns out to be surprisingly simple, because in the sum of all graphs the three and four parton contributions multiply color structures whose coefficients are governed by the non-abelian exponentiation theorem.
We introduce a new class of infrared safe jet observables, which we refer to as template overlaps, designed to filter targeted highly boosted particle decays from QCD jets and other background. Template overlaps are functional measures that quantify how well the energy flow of a physical jet matches the flow of a boosted partonic decay. Any region of the partonic phase space for the boosted decays defines a template. We will refer to the maximum functional overlap found this way as the template overlap. To illustrate the method, we test lowest-order templates designed to distinguish highly-boosted top and Higgs decays from backgrounds produced by event generators. For the functional overlap, we find good results with a simple construction based on a Gaussian in energy differences within angular regions surrounding the template partons. Although different event generators give different averages for our template overlaps, we find in each case excellent rejection power, especially when combined with cuts based on jet shapes. The template overlaps are capable of systematic improvement by including higher order corrections in the template phase space.
Baryons with one or more heavy quarks have been shown, in the context of a nonrelativistic description, to exhibit mass inequalities under permutations of their quarks, when spin averages are taken. These inequalities sometimes are invalidated when s pin-dependent forces are taken into account. A notable instance is the inequality $2E(Mmm) > E(MMm) + E(mmm)$, where $m = m_u = m_d$, satisfied for $M = m_b$ or $M = m_c$ but not for $M = m_s$, unless care is taken to remove effects of spin-spin interactions. Thus in the quark-level analog of nuclear fusion, the reactions $Lambda_b Lambda_b to Xi_{bb}N$ and $Lambda_c Lambda_c to Xi_{cc}^{++}n$ are exothermic, releasing respectively 138 and 12 MeV, while $Lambda Lambda to Xi N$ is endothermic, requiring an input of between 23 and 29 MeV. Here we explore such mass inequalities in the context of an approach, previously shown to predict masses successfully, in which contributions consist of additive constituent-quark masses, spin-spin interactions, and additional binding terms for pairs each member of which is at least as heavy as a strange quark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا