ﻻ يوجد ملخص باللغة العربية
A hidden valley sector may havea profound impact on the classic phenomenology of supersymmetry. This occurs if the LSP lies in the valley sector. In addition to reducing the standard missing energy signals and possibly providing displaced vertices (phenomena familiar from gauge-mediated and R-parity-violating models) it may lead to a variable multiplicity of new neutral particles, whose decays produce soft jets and/or leptons, and perhaps additional displaced vertices. Combined, these issues might obscure supersymmetric particle production from search strategies used on current Tevatron data and planned for the LHC. The same concerns arise more generally for any model that has a symmetry (such as T-parity or KK-parity) realized nontrivially in both the standard-model and the hidden-valley sectors. Possible strategies for experimental detection are discussed, and the potential importance of the LHCb detector is noted.
We review our recent studies on the effects of CP-violating supersymmetric (SUSY) parameters on the phenomenology of neutralinos, charginos and third generation squarks. The CP-even branching ratios of the squarks show a pronounced dependence on the
Higgs singlet superfields, usually present in extensions of the Minimal Supersymmetric Standard Model (MSSM) which address the $mu$-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmetric S
One of the great attractions of minimal super-unified supersymmetric models is the prediction of a massive, stable, weakly interacting particle (the lightest supersymmetric partner, LSP) which can have the right relic abundance to be a cold dark matt
We compute, in the MSSM framework, the sum of the one-loop electroweak and of the total QED radiation effects for the process $pp to t W+X$, initiated by the parton process $bgto tW$. Combining these terms with the existing NLO calculations of SM and
We investigate the phenomenology of an extension of the Standard Model (SM) by a non-abelian gauge group $SU(2)_{HS}$ where all SM particles are singlets under this gauge group, and a new scalar representation $phi$ that is singlet under SM gauge gro