ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Independent Bounds on Magnetic Moments of Majorana Neutrinos

106   0   0.0 ( 0 )
 نشر من قبل Nicole F. Bell
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, $mu_ u$, generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if $mu_ u$ is generated by new physics at ~ 1 TeV, and surpass current experimental sensitivity only for new physics scales > 10 -- 100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles.

قيم البحث

اقرأ أيضاً

The resonant transition effects MSW and NSFP for three flavour Majorana neutrinos in a supernova are considered, where the transition magnetic moments are likely to play a relevant role in neutrino physics. In this scenario, the deformed thermal neut rino distributions are obtained for different choices of the electron-tau mixing angle. Detailed predictions for the future large neutrino detectors are also given in terms of the ratio between the spectra of recoil electrons for deformed and undeformed spectra.
The existence of a neutrino magnetic moment implies contributions to the neutrino mass via radiative corrections. We derive model-independent naturalness upper bounds on the magnetic moments of Dirac neutrinos, generated by physics above the electrow eak scale. The neutrino mass receives a contribution from higher order operators, which are renormalized by operators responsible for the neutrino magnetic moment. This contribution can be calculated in a model independent way. In the absence of fine-tuning, we find that current neutrino mass limits imply that $|mu_ u| < 10^{-14}$ Bohr magnetons. This bound is several orders of magnitude stronger than those obtained from solar and reactor neutrino data and astrophysical observations.
We present up-to-date constraints on a generic Higgs parameter space. An accurate assessment of these exclusions must take into account statistical, and potentially signal, fluctuations in the data currently taken at the LHC. For this, we have constr ucted a straightforward statistical method for making full use of the data that is publicly available. We show that, using the expected and observed exclusions which are quoted for each search channel, we can fully reconstruct likelihood profiles under very reasonable and simple assumptions. Even working with this somewhat limited information, we show that our method is sufficiently accurate to warrant its study and advocate its use over more naive prescriptions. Using this method, we can begin to narrow in on the remaining viable parameter space for a Higgs-like scalar state, and to ascertain the nature of any hints of new physics---Higgs or otherwise---appearing in the data.
Since most of the neutrino parameters are well-measured, we illustrate precisely the prediction of the Standard Model, minimally extended to allow massive neutrinos, for the electron neutrino magnetic moment. We elaborate on the effects of light ster ile neutrinos on the effective electron neutrino magnetic moment measured at the reactors. We explicitly show that the kinematical effects of the neutrino masses are negligible even for light sterile neutrinos.
Recent experiment proposed to observe induced radiative neutrino transitions are confronted to existing bounds on neutrino magnetic moments from earth-based experiments. These are found to exclude any observation by several orders of magnitude, unles s the magnetic moments are assumed to be strongly momentum dependent. This possibility is discussed in some generality, and we find that nontrivial dependence of the neutrino form factor may indeed occur, leading to quite unexpected effects, although this is insufficient by orders of magnitude to justify the experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا