ﻻ يوجد ملخص باللغة العربية
We consider within a generalized QCD factorization approach, the high energy inclusive polarized process p p --> pion + X, including all intrinsic partonic motions. Several new spin and k_T-dependent soft functions appear and contribute to cross sections and spin asymmetries. We present here formal expressions for transverse single spin asymmetries and double longitudinal ones. The transverse single spin asymmetry, A_N, is considered in detail, and all contributions are evaluated numerically. It is shown that the azimuthal phase integrations strongly suppress most contributions, leaving at work mainly the Sivers effect.
Predictions for the single transverse spin asymmetry A_N in semi-inclusive DIS processes are given; non negligible values of A_N may arise from spin effects in the fragmentation of a polarized quark into a final hadron with a transverse momentum k_T
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, $A_{LL}$, for $pi^0$ and $eta$ production in $sqrt{s} = 200$ GeV polarized $p$$+$$p$ collisio
Some estimates for the transverse Single Spin Asymmetry, A_N, in the inclusive processes l p(transv. pol.) --> h X, given in a previous paper, are expanded and compared with new experimental data. The predictions are based on the Sivers distributions
We suggest inclusive hadron production in ultra-peripheral proton-nucleus collisions (UPCs) $p^uparrow A to h AX$ as a new channel to investigate single spin asymmetries (SSAs), in particular, to test the assumed dominance of the contribution from tw
We present estimates of transverse single-spin asymmetry in prompt photon production in the scattering of low virtuality photons off a polarized proton target and discuss the possibility of using this as a probe to get information about the gluon Siv