ﻻ يوجد ملخص باللغة العربية
In models of thick wall electroweak baryogenesis a common assumption is that the plasma interacting with the expanding Higgs bubble wall during the electroweak phase transition is in kinetic equilibrium (or close to it). We point out that, in addition to the requirement of low wall velocity, kinetic equilibrium requires that the change in the momentum of the particles due to the force exerted by the wall should be much less than that due to scattering as the plasma passes through the wall. We investigate whether this condition is satisfied for charginos and neutralinos participating in thick wall supersymmetric electroweak baryogenesis
We re-evaluate the status of supersonic electroweak baryogenesis using a generalized fluid Ansatz for the non-equilibrium distribution functions. Instead of truncating the expansion to first order in momentum, we allow for higher order terms as well,
We investigate if the CP violation necessary for successful electroweak baryogenesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singl
Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the o
In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order
We study electroweak baryogenesis driven by the top quark in two Higgs doublet model that allows flavor-changing neutral Higgs couplings. Taking Higgs sector couplings and the additional top Yukawa coupling $rho_{tt}$ to be $mathcal{O}$(1), one natur