ﻻ يوجد ملخص باللغة العربية
We present an effective flavor model for the radiative generation of fermion masses and mixings based on a SU(5)xU(2) symmetry. We assume that the original source of flavor breaking resides in the supersymmetry breaking sector. Flavor violation is transmitted radiatively to the fermion Yukawa couplings at low energy through finite supersymmetric threshold corrections. This model can fit the fermion mass ratios and CKM matrix elements, explain the non-observation of proton decay, and overcome present constraints on flavor changing processes through an approximate radiative alignment between the Yukawa and the soft trilinear sector. The model predicts new relations between dimensionless fermion mass ratios in the three fermion sectors, and the quark mixing angles.
We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of
We consider supersymmetric models where the scale of supersymmetry breaking lies between 5 $times 10^6$ GeV and 5 $times 10^8$ GeV. In this class of theories, which includes models of gauge mediated supersymmetry breaking, the lightest supersymmetric
We study the supersymmetric model with $D_4 times Z_2$ lepton flavor symmetry. We evaluate soft supersymmetry breaking terms, i.e. soft slepton masses and A-terms, which are predicted in the $D_4$ flavor model. We consider constraints due to experiments of flavor changing neutral current processes.
One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and p
We review a class of models of dynamical supersymmetry breaking, and give a unified description of these models.