ﻻ يوجد ملخص باللغة العربية
A new formalism to calculate the in-medium chiral condensate is presented. At lower densities, this approach leads to a linear expression. If we demand a compatibility with the famous model-independent result, then the pion-nucleon sigma term should be six times the average current mass of light quarks. QCD-like interactions may slow the decreasing behavior of the condensate with increasing densities, compared with the linear extrapolation, if densities are lower than twice the nuclear saturation density. At higher densities, the condensate vanishes inevitably.
We present a consistent implementation of weak decays involving an axion or axion-like particle in the context of an effective chiral Lagrangian. We argue that previous treatments of such processes have used an incorrect representation of the flavor-
We study the dynamics of the chiral phase transition expected during the expansion of the quark-gluon plasma produced in a high energy hadron or heavy ion collision, using the $O(4)$ linear sigma model in the mean field approximation. Imposing boost
We investigate higher cumulants of the sigma field as the chiral order parameter at the QCD phase transition. We derive a thermodynamic expression for the skewness and kurtosis from susceptibilities and use these to determine $Ssigma$ and $kappasigma
The saturation of QCD chiral sum rules is reanalyzed in view of the new and complete analysis of the ALEPH experimental data on the difference between vector and axial-vector correlators (V-A). Ordinary finite energy sum rules (FESR) exhibit poor sat
We present a novel treatment for calculating the in-medium quark condensates. The advantage of this approach is that one does not need to make further assumptions on the derivatives of model parameters with respect to the quark current mass. The norm